2025年学习力提升九年级数学上册浙教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习力提升九年级数学上册浙教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年学习力提升九年级数学上册浙教版》

1. 已知线段 $ a = 5\ cm,b = 15\ cm $,则线段 $ a $ 与 $ b $ 的比例中项线段长度是
$5\sqrt{3}\ cm$
.
答案: $5\sqrt{3}\ cm$
2. 一条线段 $ AB $ 的黄金分割点有
2
个.
答案: 2
3. 如果一个矩形的宽与长的比等于黄金比 $ \dfrac{\sqrt{5}-1}{2} $,就称这个矩形为黄金矩形.如图,矩形 $ ABCD $ 为黄金矩形,宽 $ AD= \sqrt{5}-1 $,则长 $ AB $ 为
2
.
答案: 2
4. 生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下 $ a $ 与全身 $ b $ 的高度比值接近 $ 0.618 $,可以增加视觉美感.若图中 $ b $ 为 $ 2 $ 米,则 $ a $ 约为
1.24米
.(精确到 $ 0.01 $)
答案: 1.24米
5. 如图体现的是黄金分割点的画法:

(1) 经过点 $ B $ 作 $ BD \perp AB $,并截取 $ BD= \dfrac{1}{2}AB $;
(2) 连结 $ AD $,在 $ DA $ 上截取 $ DE = DB $;
(3) 在 $ AB $ 上截取 $ AC = AE $,则 $ C $ 点就是线段 $ AB $ 的一个黄金分割点.
问题:若 $ AB = 2\ cm $,
则 $ AC = $
$(\sqrt{5}-1)\ cm$
,$ BC = $
$(3-\sqrt{5})\ cm$
,
所以:$ \dfrac{AC}{AB} = $
$\frac{\sqrt{5}-1}{2}$
,
$ \dfrac{BC}{AC} = $
$\frac{\sqrt{5}-1}{2}$
.(写出化简的过程)
答案: $(\sqrt{5}-1)\ cm$ $(3-\sqrt{5})\ cm$ $\frac{\sqrt{5}-1}{2}$ $\frac{\sqrt{5}-1}{2}$

查看更多完整答案,请扫码查看

关闭