2025年鲁人泰斗假期好时光八年级数学青岛版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年鲁人泰斗假期好时光八年级数学青岛版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年鲁人泰斗假期好时光八年级数学青岛版》

17. (10分)为了测量路灯($OS$)的高度,把一根长 $1.5$ 米的竹竿($AB$)竖直立在水平地面上,测得竹竿的影子($BC$)长为 $1$ 米,然后拿竹竿向远离路灯方向走了 $4$ 米($BB'$),再把竹竿竖立在地面上,测得竹竿的影子($B'C'$)长为 $1.8$ 米,求路灯离地面的高度.

解:$\because AB⊥OC',OS⊥OC'$,
$\therefore AB// OS$.
$\therefore \triangle ABC\backsim \triangle SOC$.
$\therefore \frac {BC}{BC+OB}=\frac {AB}{OS}$,即$\frac {1}{1+OB}=\frac {1.5}{h}$.
解得$OB=\frac {2}{3}h - 1$,①
同理,$\because A'B'⊥OC'$,
$\therefore \triangle A'B'C'\backsim \triangle SOC'$.
$\therefore \frac {B'C'}{B'C'+BB'+OB}=\frac {A'B'}{OS}$,$\frac {1.8}{1.8 + 4 + OB}=\frac {1.5}{h}$.②
把①代入②,得$\frac {1.8}{5.8+\frac {2}{3}h - 1}=\frac {1.5}{h}$,
解得$h=$
9

答:路灯离地面的高度是
9
米.
答案: 解:$\because AB⊥OC',OS⊥OC'$,
$\therefore AB// OS$.
$\therefore \triangle ABC\backsim \triangle SOC$.
$\therefore \frac {BC}{BC+OB}=\frac {AB}{OS}$,即$\frac {1}{1+OB}=\frac {1.5}{h}$.
解得$OB=\frac {2}{3}h - 1$,①
同理,$\because A'B'⊥OC'$,
$\therefore \triangle A'B'C'\backsim \triangle SOC'$.
$\therefore \frac {B'C'}{B'C'+BB'+OB}=\frac {A'B'}{OS}$,$\frac {1.8}{1.8 + 4 + OB}=\frac {1.5}{h}$.②
把①代入②,得$\frac {1.8}{5.8+\frac {2}{3}h - 1}=\frac {1.5}{h}$,
解得$h=9$.
答:路灯离地面的高度是$9$米.
18. (10分)如图,$AC$ 为 $□ ABCD$ 的对角线,作 $\angle ABE = \angle ACB$,$BE$ 交边 $AD$ 于点 $E$,交 $AC$ 于点 $F$.
(1)求证:$AE^2 = EF \cdot BE$;
(2)若 $EF = 1$,$E$ 是 $AD$ 的中点,求边 $BC$ 的长.

(1)证明:$\because$ 四边形$ABCD$为平行四边形,
$\therefore AD// BC$.
$\therefore ∠DAC=∠ACB$.
$\because ∠ACB=∠ABE$,
$\therefore ∠EAF=∠EBA$.
$\because ∠AEF=∠BEA$,
$\therefore \triangle EAF\backsim \triangle EBA$.
$\therefore EA:EB=EF:EA$.
$\therefore AE^{2}=EF\cdot BE$;
(2) $\because$ 四边形$ABCD$为平行四边形,
$\therefore AD=BC$.
$\because E$是边$AD$的中点,
$\therefore BC=2AE$.
$\because AE// BC$,
$\therefore \triangle EAF\backsim \triangle BCF$.
$\therefore \frac {AE}{CB}=\frac {EF}{BF}=\frac {1}{2}$.
$\therefore BF=2EF=2$.
$\therefore BE=3$.
$\because AE^{2}=EF\cdot BE=1×3=3$,
$\therefore AE=\sqrt {3}$.
$\therefore BC=2AE=$
$2\sqrt{3}$
答案: 解:(1)证明:$\because$ 四边形$ABCD$为平行四边形,
$\therefore AD// BC$.
$\therefore ∠DAC=∠ACB$.
$\because ∠ACB=∠ABE$,
$\therefore ∠EAF=∠EBA$.
$\because ∠AEF=∠BEA$,
$\therefore \triangle EAF\backsim \triangle EBA$.
$\therefore EA:EB=EF:EA$.
$\therefore AE^{2}=EF\cdot BE$;
(2)$\because$ 四边形$ABCD$为平行四边形,
$\therefore AD=BC$.
$\because E$是边$AD$的中点,
$\therefore BC=2AE$.
$\because AE// BC$,
$\therefore \triangle EAF\backsim \triangle BCF$.
$\therefore \frac {AE}{CB}=\frac {EF}{BF}=\frac {1}{2}$.
$\therefore BF=2EF=2$.
$\therefore BE=3$.
$\because AE^{2}=EF\cdot BE=1×3=3$,
$\therefore AE=\sqrt {3}$.
$\therefore BC=2AE=2\sqrt {3}$.
19. (10分)如图,在正方形 $ABCD$ 中,在 $BC$ 边上取中点 $E$,连接 $ED$,过点 $E$ 作 $EF \perp ED$ 交 $AB$ 于点 $G$,交 $DA$ 的延长线于点 $F$.
(1)求证:$\triangle ECD \sim \triangle DEF$;
证明:$\because$ 四边形$ABCD$是正方形,$EF⊥ED$,
$\therefore ∠FED=∠C=90^{\circ },BC// AD$.
$\therefore ∠CED=∠FDE$.
$\therefore \triangle ECD\backsim \triangle DEF$.
(2)若 $CD = 4$,求 $AF$ 的长.
解:$\because$ 四边形$ABCD$是正方形,
$\therefore ∠C=90^{\circ },AD=BC=CD=4$.
$\because E$为$BC$的中点,
$\therefore CE=\frac {1}{2}BC=2$.
在$Rt\triangle DCE$中,由勾股定理,得$ED=\sqrt {CE^{2}+DC^{2}}=\sqrt {2^{2}+4^{2}}=2\sqrt {5}$,
$\because \triangle ECD\backsim \triangle DEF$,
$\therefore \frac {CE}{ED}=\frac {ED}{DF}$.
$\therefore \frac {2}{2\sqrt {5}}=\frac {2\sqrt {5}}{DF}$.
解得$DF=10$,
$\because AD=4$,
$\therefore AF=DF - AD=10 - 4=$
6
答案: 解:(1)证明:$\because$ 四边形$ABCD$是正方形,$EF⊥ED$,
$\therefore ∠FED=∠C=90^{\circ },BC// AD$.
$\therefore ∠CED=∠FDE$.
$\therefore \triangle ECD\backsim \triangle DEF$.
(2)$\because$ 四边形$ABCD$是正方形,
$\therefore ∠C=90^{\circ },AD=BC=CD=4$.
$\because E$为$BC$的中点,
$\therefore CE=\frac {1}{2}BC=2$.
在$Rt\triangle DCE$中,由勾股定理,得$ED=\sqrt {CE^{2}+DC^{2}}=\sqrt {2^{2}+4^{2}}=2\sqrt {5}$,
$\because \triangle ECD\backsim \triangle DEF$,
$\therefore \frac {CE}{ED}=\frac {ED}{DF}$.
$\therefore \frac {2}{2\sqrt {5}}=\frac {2\sqrt {5}}{DF}$.
解得$DF=10$,
$\because AD=4$,
$\therefore AF=DF - AD=10 - 4=6$.
20. (12分)如图,在 $\triangle ABC$ 中,$BD$ 是中线,点 $E$ 是 $AB$ 上一点,$CE$ 与 $BD$ 交于点 $F$,$EB = EF$.
(1)在图1中找出与线段 $AB$ 相等的线段,并证明;
(2)在图2中,若 $\angle ADB = 90^{\circ} - \frac{1}{2}\angle ABD$,$\frac{AB}{AC} = k$,求 $\frac{DF}{BF}$ 的值(用含 $k$ 的代数式表示).
答案:
解:(1)$CF=AB$.理由如下:
如图$1$,延长$BD$至点$M$,使$MD=BD$.
$\because D$是$AC$的中点,
图1
$\therefore AD=CD$.
在$\triangle ADB$与$\triangle CDM$中,
$\left\{\begin{array}{l} AD=CD,\\ ∠ADB=∠CDM,\\ BD=MD,\end{array}\right.$
$\therefore \triangle ADB\cong \triangle CDM(SAS)$.
$\therefore AB=CM,∠ABD=∠CMD$.
$\because EB=EF$,
$\therefore ∠ABD=∠EFB$.
$\because ∠EFB=∠CFM$,
$\therefore ∠CFM=∠CMD$.
$\therefore CM=CF$.
$\because AB=CM$,
$\therefore CF=AB$.
(2)$\because ∠ADB=90^{\circ }-\frac {1}{2}∠ABD$,
设$∠ABD=\alpha$,则$∠ADB=90^{\circ }-\frac {1}{2}\alpha$.
$\therefore ∠BAD=180^{\circ }-∠ABD-∠ADB=180^{\circ }-\alpha -(90^{\circ }-\frac {1}{2}\alpha)=90^{\circ }-\frac {1}{2}\alpha$.
$\therefore ∠ADB=∠BAD$.
$\therefore BD=BA$.
如图$2$,在$FD$的延长线上取点$M$,使$FM=FC$,连接$CM$.
图2
$\because ∠DFC=∠ABD,BD=BA,FM=FC$,
$\therefore ∠M=∠BAD=∠ADB=∠CDM$.
$\therefore MC=CD=AD$.
设$MC=CD=AD=a$,
由(1)知$CF=AB$,
$\therefore FM=BD$.
$\therefore DM=BF$.
$\because AB=kAC$,
$\therefore FM=CF=BD=AB=2ka$.
$\because ∠ADB=∠M,∠BAD=∠CDM$,
$\therefore \triangle ABD\backsim \triangle DCM$.
$\therefore \frac {AD}{DM}=\frac {AB}{DC}=2k$.
$\therefore \frac {a}{DM}=2k$.
$\therefore BF=DM=\frac {a}{2k}$.
$\therefore FD=BD - BF=2ka-\frac {a}{2k}=\frac {4k^{2}-1}{2k}a$.
$\therefore \frac {DF}{BF}=\frac {\frac {4ak^{2}-a}{2k}}{\frac {a}{2k}}=\frac {4ak^{2}-a}{a}=4k^{2}-1$.

查看更多完整答案,请扫码查看

关闭