2025年鲁人泰斗假期好时光八年级数学青岛版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年鲁人泰斗假期好时光八年级数学青岛版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
9. 若两个相似三角形的面积比为 $9:25$,则这两个相似三角形的周长比是
$3:5$
.
答案:
$3:5$
10. 为了测量一棵树的高度,小梦在同一时间、同一地点测得小兰身高 $1.5\mathrm{m}$,她的影长是 $2.4\mathrm{m}$,树的影子长 $4\mathrm{m}$,则这棵树高有

2.5
$\mathrm{m}$.
答案:
$2.5$
11. 若两个相似多边形的最长边的长度分别为 $10$ 和 $20$,且其中一个多边形的最短边长为 $4$,则另一个多边形的最短边长为
8或2
.
答案:
$8$或$2$
12. 如图,在 $\triangle ABC$ 中,点 $D$ 是 $AC$ 上一点,$\angle CBD = \angle A$,$\frac{BC}{AC} = \frac{2}{3}$,则 $\frac{CD}{AD}$ 的值是______

$\frac {4}{5}$
.
答案:
$\frac {4}{5}$【解析】$\because ∠CBD=∠A,∠C=∠C$,
$\therefore \triangle ABC\backsim \triangle BDC$.
$\therefore \frac {BC}{AC}=\frac {CD}{BC}=\frac {2}{3}$.
$\therefore$ 设$CD=2x,BC=3x$.
$\because \frac {BC}{AC}=\frac {2}{3}$,
$\therefore AC=\frac {9}{2}x$.
$\therefore AD=AC - CD=\frac {5}{2}x$.
$\therefore \frac {CD}{AD}=\frac {2x}{\frac {5}{2}x}=\frac {4}{5}$.
$\therefore \triangle ABC\backsim \triangle BDC$.
$\therefore \frac {BC}{AC}=\frac {CD}{BC}=\frac {2}{3}$.
$\therefore$ 设$CD=2x,BC=3x$.
$\because \frac {BC}{AC}=\frac {2}{3}$,
$\therefore AC=\frac {9}{2}x$.
$\therefore AD=AC - CD=\frac {5}{2}x$.
$\therefore \frac {CD}{AD}=\frac {2x}{\frac {5}{2}x}=\frac {4}{5}$.
13. 在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是 $Rt\triangle ABC$,$\angle C = 90^{\circ}$,要截得的正方形 $EFGD$ 的边 $FG$ 在 $AB$ 上,顶点 $E$,$D$ 分别在边 $CA$,$CB$ 上,如果 $AF = 4$,$BG = 9$,那么正方形铁皮的边长为______
6
.
答案:
$6$【解析】根据题意知,$∠AFE=∠BGD=∠C=90^{\circ }$,
$\therefore ∠A=∠BDG$(同角的余角相等).
$\therefore \triangle AEF\backsim \triangle DBG$.
$\therefore \frac {AF}{DG}=\frac {EF}{BG}$.
又$\because EF=DG,AF=4,BG=9$,
$\therefore \frac {4}{EF}=\frac {EF}{9}$.
$\therefore EF=6$,即正方形铁皮的边长为$6$.
$\therefore ∠A=∠BDG$(同角的余角相等).
$\therefore \triangle AEF\backsim \triangle DBG$.
$\therefore \frac {AF}{DG}=\frac {EF}{BG}$.
又$\because EF=DG,AF=4,BG=9$,
$\therefore \frac {4}{EF}=\frac {EF}{9}$.
$\therefore EF=6$,即正方形铁皮的边长为$6$.
14. 如图,在 $\triangle ABC$ 中,$AD_1 = \frac{1}{4}AB$,$D_1D_2 = \frac{1}{4}D_1B$,$D_2D_3 = \frac{1}{4}D_2B$,……,照这样继续下去,$D_{2020}D_{2021} = \frac{1}{4}D_{2020}B$,且 $D_1E_1 // BC$,$D_2E_2 // BC$,$D_3E_3 // BC$,……,$D_{2021}E_{2021} // BC$,则 $\frac{D_{2021}E_{2021}}{BC} = $______

$1-(\frac {3}{4})^{2021}$
.
答案:
$1-(\frac {3}{4})^{2021}$【解析】$\because D_{1}E_{1}// BC$,
$\therefore \triangle AD_{1}E_{1}\backsim \triangle ABC$.
$\therefore \frac {D_{1}E_{1}}{BC}=\frac {AD_{1}}{AB}=\frac {1}{4}$.
$\therefore D_{1}E_{1}=\frac {1}{4}BC,D_{1}B=\frac {3}{4}AB$.
$\because D_{1}D_{2}=\frac {1}{4}D_{1}B=\frac {3}{16}AB$,
$\therefore AD_{2}=AD_{1}+D_{1}D_{2}=\frac {1}{4}AB+\frac {3}{16}AB=\frac {7}{16}AB$.
$\therefore D_{2}E_{2}=\frac {7}{16}BC=(1-\frac {9}{16})\cdot BC=[1-(\frac {3}{4})^{2}]\cdot BC$,
同理可得$D_{3}E_{3}=\frac {27}{64}BC=[1-(\frac {3}{4})^{3}]\cdot BC$.
$\therefore D_{n}E_{n}=[1-(\frac {3}{4})^{n}]\cdot BC$.
$\therefore \frac {D_{2021}E_{2021}}{BC}=1-(\frac {3}{4})^{2021}$.
$\therefore \triangle AD_{1}E_{1}\backsim \triangle ABC$.
$\therefore \frac {D_{1}E_{1}}{BC}=\frac {AD_{1}}{AB}=\frac {1}{4}$.
$\therefore D_{1}E_{1}=\frac {1}{4}BC,D_{1}B=\frac {3}{4}AB$.
$\because D_{1}D_{2}=\frac {1}{4}D_{1}B=\frac {3}{16}AB$,
$\therefore AD_{2}=AD_{1}+D_{1}D_{2}=\frac {1}{4}AB+\frac {3}{16}AB=\frac {7}{16}AB$.
$\therefore D_{2}E_{2}=\frac {7}{16}BC=(1-\frac {9}{16})\cdot BC=[1-(\frac {3}{4})^{2}]\cdot BC$,
同理可得$D_{3}E_{3}=\frac {27}{64}BC=[1-(\frac {3}{4})^{3}]\cdot BC$.
$\therefore D_{n}E_{n}=[1-(\frac {3}{4})^{n}]\cdot BC$.
$\therefore \frac {D_{2021}E_{2021}}{BC}=1-(\frac {3}{4})^{2021}$.
15. (8分)如图,点 $D$ 在 $\angle BAC$ 的内部,$\angle 1 = \angle 2$,$\angle 1 + \angle BAC = 180^{\circ}$. $BD = 1.5$,$CD = 2$,求 $AD$ 的长.

答案:
解:延长$AD$,如图所示.
$\because ∠1+∠BAC=180^{\circ }$,
$∠1+∠BDE=180^{\circ }$,
$\therefore ∠BAC=∠BDE$.
又$\because ∠BAC=∠BAD+∠CAD$,
$∠BDE=∠BAD+∠B$,
$\therefore ∠B=∠CAD$.
$\because ∠1=∠2$,
$\therefore \triangle ABD\backsim \triangle CAD$.
$\therefore \frac {BD}{AD}=\frac {AD}{CD}$,即$\frac {1.5}{AD}=\frac {AD}{2}$.
$\therefore AD=\sqrt {3}$.
解:延长$AD$,如图所示.
$\because ∠1+∠BAC=180^{\circ }$,
$∠1+∠BDE=180^{\circ }$,
$\therefore ∠BAC=∠BDE$.
又$\because ∠BAC=∠BAD+∠CAD$,
$∠BDE=∠BAD+∠B$,
$\therefore ∠B=∠CAD$.
$\because ∠1=∠2$,
$\therefore \triangle ABD\backsim \triangle CAD$.
$\therefore \frac {BD}{AD}=\frac {AD}{CD}$,即$\frac {1.5}{AD}=\frac {AD}{2}$.
$\therefore AD=\sqrt {3}$.
16. (8分)如图,在平面直角坐标系中,$\triangle ABC$ 三个顶点的坐标分别为 $A(3,3)$,$B(1,2)$,$C(4,1)$,点 $E$ 的坐标为 $(1,1)$.
(1)画出将 $\triangle ABC$ 向左平移 $5$ 个单位长度的 $\triangle A_1B_1C_1$;
(2)画出和 $\triangle ABC$ 以点 $E$ 为位似中心的位似图形 $\triangle A_2B_2C_2$,$\triangle A_2B_2C_2$ 和 $\triangle ABC$ 相似比为 $2:1$,且位于点 $E$ 的两侧;
(3)直接写出点 $A_2$,$B_2$,$C_2$ 三个点的坐标.

(1)画出将 $\triangle ABC$ 向左平移 $5$ 个单位长度的 $\triangle A_1B_1C_1$;
(2)画出和 $\triangle ABC$ 以点 $E$ 为位似中心的位似图形 $\triangle A_2B_2C_2$,$\triangle A_2B_2C_2$ 和 $\triangle ABC$ 相似比为 $2:1$,且位于点 $E$ 的两侧;
(3)直接写出点 $A_2$,$B_2$,$C_2$ 三个点的坐标.
答案:
解:(1)如图,$\triangle A_{1}B_{1}C_{1}$即为所求作.
(2)如图,$\triangle A_{2}B_{2}C_{2}$即为所求作
(3)由图可知,$A_{2}(-3,-3),B_{2}(1,-1),C_{2}(-5,1)$.
解:(1)如图,$\triangle A_{1}B_{1}C_{1}$即为所求作.
(2)如图,$\triangle A_{2}B_{2}C_{2}$即为所求作
(3)由图可知,$A_{2}(-3,-3),B_{2}(1,-1),C_{2}(-5,1)$.
查看更多完整答案,请扫码查看