第14页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
1. 用指定的方法解一元二次方程:
(1)$64(x + 1)^2 = 81$。(直接开平方法)
(2)$x^2 - 4x + 2 = 0$。(配方法)
(3)$x(x - 3) = 10(x - 3)$。(因式分解法)
(4)$2x^2 - 7x - 2 = 0$。(公式法)
(1)$64(x + 1)^2 = 81$。(直接开平方法)
(2)$x^2 - 4x + 2 = 0$。(配方法)
(3)$x(x - 3) = 10(x - 3)$。(因式分解法)
(4)$2x^2 - 7x - 2 = 0$。(公式法)
答案:
1.解:
(1)$(x+1)^{2}=\frac {81}{64},\therefore x+1=\pm \frac {9}{8}.\therefore x_{1}=\frac {1}{8},x_{2}=-\frac {17}{8}$.
(2)$x^{2}-4x+4=2,(x-2)^{2}=2,\therefore x-2=\pm \sqrt {2}.\therefore x_{1}=2+\sqrt {2},x_{2}=2-\sqrt {2}$.
(3)$x(x-3)-10(x-3)=0,(x-3)(x-10)=0,\therefore x-3=0$或$x-10=0.\therefore x_{1}=3,x_{2}=10$.
(4)$\because a=2,b=-7,c=-2,\therefore \Delta =(-7)^{2}-4×2×(-2)=65>0.\therefore x=\frac {7\pm \sqrt {65}}{2×2}=\frac {7\pm \sqrt {65}}{4}.\therefore x_{1}=\frac {7+\sqrt {65}}{4},x_{2}=\frac {7-\sqrt {65}}{4}.$
(1)$(x+1)^{2}=\frac {81}{64},\therefore x+1=\pm \frac {9}{8}.\therefore x_{1}=\frac {1}{8},x_{2}=-\frac {17}{8}$.
(2)$x^{2}-4x+4=2,(x-2)^{2}=2,\therefore x-2=\pm \sqrt {2}.\therefore x_{1}=2+\sqrt {2},x_{2}=2-\sqrt {2}$.
(3)$x(x-3)-10(x-3)=0,(x-3)(x-10)=0,\therefore x-3=0$或$x-10=0.\therefore x_{1}=3,x_{2}=10$.
(4)$\because a=2,b=-7,c=-2,\therefore \Delta =(-7)^{2}-4×2×(-2)=65>0.\therefore x=\frac {7\pm \sqrt {65}}{2×2}=\frac {7\pm \sqrt {65}}{4}.\therefore x_{1}=\frac {7+\sqrt {65}}{4},x_{2}=\frac {7-\sqrt {65}}{4}.$
2. 用合适的方法解一元二次方程:
(1)$(2x + 3)^2 = (3x + 2)^2$。
(2)$4x(x - 6) = 1$。
(3)$1 - 8x + 16x^2 = 2 - 8x$。
(4)$3(x - 2)^2 = x^2 - 4$。
(5)$(x + 1)(x + 3) = 2$。
(6)$(2x + 1)^2 = x^2 + 2$。
(1)$(2x + 3)^2 = (3x + 2)^2$。
(2)$4x(x - 6) = 1$。
(3)$1 - 8x + 16x^2 = 2 - 8x$。
(4)$3(x - 2)^2 = x^2 - 4$。
(5)$(x + 1)(x + 3) = 2$。
(6)$(2x + 1)^2 = x^2 + 2$。
答案:
2.解:
(1)开平方,得$2x+3=3x+2$或$2x+3=-3x-2$.解得$x_{1}=1,x_{2}=-1$.
(2)$x^{2}-6x=\frac {1}{4}.x^{2}-6x+9=\frac {1}{4}+9$,即$(x-3)^{2}=\frac {37}{4}.\therefore x-3=\frac {\sqrt {37}}{2}$或$x-3=-\frac {\sqrt {37}}{2}.\therefore x_{1}=3+\frac {\sqrt {37}}{2},x_{2}=3-\frac {\sqrt {37}}{2}$.
(3)$16x^{2}=1,x^{2}=\frac {1}{16},\therefore x=\pm \frac {1}{4}.\therefore x_{1}=\frac {1}{4},x_{2}=-\frac {1}{4}$.
(4)$3(x-2)^{2}-(x+2)(x-2)=0.(x-2)(3x-6-x-2)=0.\therefore x-2=0$或$2x-8=0.\therefore x_{1}=2,x_{2}=4$.
(5)整理,得$x^{2}+4x=-1.x^{2}+4x+4=-1+4$,即$(x+2)^{2}=3.\therefore x+2=\pm \sqrt {3}.\therefore x_{1}=-2+\sqrt {3},x_{2}=-2-\sqrt {3}$.
(6)整理,得$3x^{2}+4x-1=0.\because a=3,b=4,c=-1,\therefore \Delta =4^{2}-4×3×(-1)=16+12=28>0.\therefore x=\frac {-4\pm \sqrt {28}}{6}=\frac {-4\pm 2\sqrt {7}}{6}=\frac {-2\pm \sqrt {7}}{3}.\therefore x_{1}=\frac {-2+\sqrt {7}}{3},x_{2}=\frac {-2-\sqrt {7}}{3}.$
(1)开平方,得$2x+3=3x+2$或$2x+3=-3x-2$.解得$x_{1}=1,x_{2}=-1$.
(2)$x^{2}-6x=\frac {1}{4}.x^{2}-6x+9=\frac {1}{4}+9$,即$(x-3)^{2}=\frac {37}{4}.\therefore x-3=\frac {\sqrt {37}}{2}$或$x-3=-\frac {\sqrt {37}}{2}.\therefore x_{1}=3+\frac {\sqrt {37}}{2},x_{2}=3-\frac {\sqrt {37}}{2}$.
(3)$16x^{2}=1,x^{2}=\frac {1}{16},\therefore x=\pm \frac {1}{4}.\therefore x_{1}=\frac {1}{4},x_{2}=-\frac {1}{4}$.
(4)$3(x-2)^{2}-(x+2)(x-2)=0.(x-2)(3x-6-x-2)=0.\therefore x-2=0$或$2x-8=0.\therefore x_{1}=2,x_{2}=4$.
(5)整理,得$x^{2}+4x=-1.x^{2}+4x+4=-1+4$,即$(x+2)^{2}=3.\therefore x+2=\pm \sqrt {3}.\therefore x_{1}=-2+\sqrt {3},x_{2}=-2-\sqrt {3}$.
(6)整理,得$3x^{2}+4x-1=0.\because a=3,b=4,c=-1,\therefore \Delta =4^{2}-4×3×(-1)=16+12=28>0.\therefore x=\frac {-4\pm \sqrt {28}}{6}=\frac {-4\pm 2\sqrt {7}}{6}=\frac {-2\pm \sqrt {7}}{3}.\therefore x_{1}=\frac {-2+\sqrt {7}}{3},x_{2}=\frac {-2-\sqrt {7}}{3}.$
查看更多完整答案,请扫码查看