2025年新课堂假期生活暑假生活北京教育出版社七年级数学华师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课堂假期生活暑假生活北京教育出版社七年级数学华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 已知$2x+y=5$,则用含$x$的式子表示$y$为
$y = 5 - 2x$
.
答案:
1. $y = 5 - 2x$
2. 在二元一次方程$x-2y=4$中,当$x$分别等于$-2$、$0$时,对应的$y$的值依次是
$-3$、$-2$
.
答案:
$-3$、$-2$
3. 在$\triangle ABC$中,$\angle A-\angle B=20^{\circ}$,$\angle A+\angle B=140^{\circ}$,则$\angle A=$
$80^{\circ}$
,$\angle C=$$40^{\circ}$
.
答案:
$80^{\circ}$;$40^{\circ}$
4. 方程组$\begin{cases}x+y=5k,\\x-y=9k\end{cases}$的解是二元一次方程$2x+3y=6$的解,则$k$的值是
$\frac{3}{4}$
.
答案:
$\frac{3}{4}$
5. 学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时,你才出生,你到我这么大时我已经36岁了.”老师的年龄为
24
岁,学生的年龄为12
岁.
答案:
24 12
6. 若$\begin{cases}x=a,\\y=b\end{cases}$是方程$2x+y=0$的解,则$6a+3b+2$的值为
2
.
答案:
$2$
二、解下列方程组
1. $\begin{cases}3x-y=0,\\3x=9-2y.\end{cases}$
2. $\begin{cases}x+2y=2,\\3x+7y=7.\end{cases}$
3. (选做)$\begin{cases}2x+y+3z=13,\\4x+2y+z=11,\\6x+y+4z=20.\end{cases}$
4. (选做)$\begin{cases}3x+2y+5z=32,\\2x-4y+3z=4,\\5x-6y+7z=20.\end{cases}$
1. $\begin{cases}3x-y=0,\\3x=9-2y.\end{cases}$
$\begin{cases}x = 1\\y = 3\end{cases}$
2. $\begin{cases}x+2y=2,\\3x+7y=7.\end{cases}$
$\begin{cases}x = 0\\y = 1\end{cases}$
3. (选做)$\begin{cases}2x+y+3z=13,\\4x+2y+z=11,\\6x+y+4z=20.\end{cases}$
$\begin{cases}x = 1\\y = 2\\z = 3\end{cases}$
4. (选做)$\begin{cases}3x+2y+5z=32,\\2x-4y+3z=4,\\5x-6y+7z=20.\end{cases}$
$\begin{cases}x = 2\\y = 3\\z = 4\end{cases}$
答案:
【解析】:1. 对于方程组$\begin{cases}3x - y = 0&(1)\\3x = 9 - 2y&(2)\end{cases}$由$(1)$式可得$3x=y$。把$3x = y$代入$(2)$式,得到$y=9 - 2y$。移项可得$y + 2y=9$,即$3y = 9$,解得$y = 3$。把$y = 3$代入$(1)$式$3x-y = 0$中,即$3x-3 = 0$,移项可得$3x=3$,解得$x = 1$。【答案】:$\begin{cases}x = 1\\y = 3\end{cases}$
@@【解析】:本题可使用消元法来求解方程组。对于方程组$\begin{cases}x + 2y = 2&(1)\\3x + 7y = 7&(2)\end{cases}$,先由$(1)$式可得$x = 2 - 2y$ $(3)$,再将$(3)$式代入$(2)$式,得到关于$y$的方程$3(2 - 2y)+7y = 7$,展开括号得$6 - 6y + 7y = 7$,即$y = 7 - 6 = 1$。把$y = 1$代入$(3)$式,可得$x = 2 - 2×1 = 0$。【答案】:$\begin{cases}x = 0\\y = 1\end{cases}$
@@【解析】:本题可通过消元法来求解方程组$\begin{cases}2x + y + 3z = 13&(1)\\4x + 2y + z = 11&(2)\\6x + y + 4z = 20&(3)\end{cases}$。- **步骤一:消去$y$,得到关于$x$和$z$的方程组**用$(3)$式减去$(1)$式消去$y$:$(6x + y + 4z)-(2x + y + 3z)=20 - 13$去括号得$6x + y + 4z - 2x - y - 3z = 7$合并同类项得$4x + z = 7$ $(4)$由$(1)$式乘以$2$得$4x + 2y + 6z = 26$ $(5)$用$(5)$式减去$(2)$式消去$y$:$(4x + 2y + 6z)-(4x + 2y + z)=26 - 11$去括号得$4x + 2y + 6z - 4x - 2y - z = 15$合并同类项得$5z = 15$,解得$z = 3$。- **步骤二:将$z = 3$代入$(4)$式,求出$x$的值**把$z = 3$代入$4x + z = 7$,得$4x + 3 = 7$,移项得$4x = 7 - 3 = 4$,解得$x = 1$。- **步骤三:将$x = 1$,$z = 3$代入$(1)$式,求出$y$的值**把$x = 1$,$z = 3$代入$2x + y + 3z = 13$,得$2\times1 + y + 3\times3 = 13$,即$2 + y + 9 = 13$,移项得$y = 13 - 2 - 9 = 2$。【答案】:$\begin{cases}x = 1\\y = 2\\z = 3\end{cases}$
@@【解析】:本题可通过消元法来求解方程组$\begin{cases}3x + 2y + 5z = 32&(1)\\2x - 4y + 3z = 4&(2)\\5x - 6y + 7z = 20&(3)\end{cases}$。- **步骤一:消去$y$,得到关于$x$和$z$的方程**给$(1)\times2$可得:$6x + 4y + 10z = 64\ (4)$$(2)+(4)$消去$y$可得:$\begin{aligned}2x - 4y + 3z + 6x + 4y + 10z&=4 + 64\\8x + 13z&=68\ (5)\end{aligned}$$(1)\times3$可得:$9x + 6y + 15z = 96\ (6)$$(3)+(6)$消去$y$可得:$\begin{aligned}5x - 6y + 7z + 9x + 6y + 15z&=20 + 96\\14x + 22z&=116\\7x + 11z&=58\ (7)\end{aligned}$- **步骤二:求解关于$x$和$z$的方程组$\begin{cases}8x + 13z = 68&(5)\\7x + 11z = 58&(7)\end{cases}$**给$(5)\times7$可得:$56x + 91z = 476\ (8)$给$(7)\times8$可得:$56x + 88z = 464\ (9)$$(8)-(9)$消去$x$可得:$\begin{aligned}56x + 91z - (56x + 88z)&=476 - 464\\56x + 91z - 56x - 88z&=12\\3z&=12\\z&=4\end{aligned}$把$z = 4$代入$(5)$可得:$\begin{aligned}8x + 13\times4&=68\\8x + 52&=68\\8x&=16\\x&=2\end{aligned}$- **步骤三:将$x = 2$,$z = 4$代入$(1)$,求出$y$的值**把$x = 2$,$z = 4$代入$(1)$可得:$\begin{aligned}3\times2 + 2y + 5\times4&=32\\6 + 2y + 20&=32\\2y + 26&=32\\2y&=6\\y&=3\end{aligned}$【答案】:$\begin{cases}x = 2\\y = 3\\z = 4\end{cases}$
@@【解析】:本题可使用消元法来求解方程组。对于方程组$\begin{cases}x + 2y = 2&(1)\\3x + 7y = 7&(2)\end{cases}$,先由$(1)$式可得$x = 2 - 2y$ $(3)$,再将$(3)$式代入$(2)$式,得到关于$y$的方程$3(2 - 2y)+7y = 7$,展开括号得$6 - 6y + 7y = 7$,即$y = 7 - 6 = 1$。把$y = 1$代入$(3)$式,可得$x = 2 - 2×1 = 0$。【答案】:$\begin{cases}x = 0\\y = 1\end{cases}$
@@【解析】:本题可通过消元法来求解方程组$\begin{cases}2x + y + 3z = 13&(1)\\4x + 2y + z = 11&(2)\\6x + y + 4z = 20&(3)\end{cases}$。- **步骤一:消去$y$,得到关于$x$和$z$的方程组**用$(3)$式减去$(1)$式消去$y$:$(6x + y + 4z)-(2x + y + 3z)=20 - 13$去括号得$6x + y + 4z - 2x - y - 3z = 7$合并同类项得$4x + z = 7$ $(4)$由$(1)$式乘以$2$得$4x + 2y + 6z = 26$ $(5)$用$(5)$式减去$(2)$式消去$y$:$(4x + 2y + 6z)-(4x + 2y + z)=26 - 11$去括号得$4x + 2y + 6z - 4x - 2y - z = 15$合并同类项得$5z = 15$,解得$z = 3$。- **步骤二:将$z = 3$代入$(4)$式,求出$x$的值**把$z = 3$代入$4x + z = 7$,得$4x + 3 = 7$,移项得$4x = 7 - 3 = 4$,解得$x = 1$。- **步骤三:将$x = 1$,$z = 3$代入$(1)$式,求出$y$的值**把$x = 1$,$z = 3$代入$2x + y + 3z = 13$,得$2\times1 + y + 3\times3 = 13$,即$2 + y + 9 = 13$,移项得$y = 13 - 2 - 9 = 2$。【答案】:$\begin{cases}x = 1\\y = 2\\z = 3\end{cases}$
@@【解析】:本题可通过消元法来求解方程组$\begin{cases}3x + 2y + 5z = 32&(1)\\2x - 4y + 3z = 4&(2)\\5x - 6y + 7z = 20&(3)\end{cases}$。- **步骤一:消去$y$,得到关于$x$和$z$的方程**给$(1)\times2$可得:$6x + 4y + 10z = 64\ (4)$$(2)+(4)$消去$y$可得:$\begin{aligned}2x - 4y + 3z + 6x + 4y + 10z&=4 + 64\\8x + 13z&=68\ (5)\end{aligned}$$(1)\times3$可得:$9x + 6y + 15z = 96\ (6)$$(3)+(6)$消去$y$可得:$\begin{aligned}5x - 6y + 7z + 9x + 6y + 15z&=20 + 96\\14x + 22z&=116\\7x + 11z&=58\ (7)\end{aligned}$- **步骤二:求解关于$x$和$z$的方程组$\begin{cases}8x + 13z = 68&(5)\\7x + 11z = 58&(7)\end{cases}$**给$(5)\times7$可得:$56x + 91z = 476\ (8)$给$(7)\times8$可得:$56x + 88z = 464\ (9)$$(8)-(9)$消去$x$可得:$\begin{aligned}56x + 91z - (56x + 88z)&=476 - 464\\56x + 91z - 56x - 88z&=12\\3z&=12\\z&=4\end{aligned}$把$z = 4$代入$(5)$可得:$\begin{aligned}8x + 13\times4&=68\\8x + 52&=68\\8x&=16\\x&=2\end{aligned}$- **步骤三:将$x = 2$,$z = 4$代入$(1)$,求出$y$的值**把$x = 2$,$z = 4$代入$(1)$可得:$\begin{aligned}3\times2 + 2y + 5\times4&=32\\6 + 2y + 20&=32\\2y + 26&=32\\2y&=6\\y&=3\end{aligned}$【答案】:$\begin{cases}x = 2\\y = 3\\z = 4\end{cases}$
查看更多完整答案,请扫码查看