2025年期末考向标八年级数学上册冀教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年期末考向标八年级数学上册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第3页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
14. (邢台月考)由下表数据可知,$a + b =$

0
.
答案:
14.$0$ [解析]观察表可知$\frac{x - 1}{x} = 2$,方程两边同乘$x$,得$x - 1 = 2x$,解得$x = -1$.经检验,$x = -1$是原分式方程的解,
∴$a = x = -1$,$b = \frac{x^{2}}{x + 2} = \frac{(-1)^{2}}{-1 + 2} = 1$,
∴$a + b = -1 + 1 = 0$.
∴$a = x = -1$,$b = \frac{x^{2}}{x + 2} = \frac{(-1)^{2}}{-1 + 2} = 1$,
∴$a + b = -1 + 1 = 0$.
15. (石家庄期末)解分式方程$\frac{k}{x - 2} = \frac{k - 2}{2 - x} - 3$产生增根,则$k$的值为
1
.
答案:
15.$1$ [解析]方程两边同乘$x - 2$,得$k = 2 - k - 3(x - 2)$.解这个整式方程,得$x = \frac{8 - 2k}{3}$.
∵分式方程$\frac{k}{x - 2} = 3$产生增根,
∴$\frac{8 - 2k}{3} = 2$,
∴$k = 1$.
∵分式方程$\frac{k}{x - 2} = 3$产生增根,
∴$\frac{8 - 2k}{3} = 2$,
∴$k = 1$.
16. (唐山期中)若$\frac{1}{a} - \frac{1}{b} = 4$,计算下列各式的值.
(1)$\frac{ab}{a - b} =$
(2)$\frac{a - b}{3a + 2ab - 3b} =$
(1)$\frac{ab}{a - b} =$
-\frac{1}{4}
.(2)$\frac{a - b}{3a + 2ab - 3b} =$
\frac{2}{5}
.
答案:
16.
(1)$-\frac{1}{4}$
(2)$\frac{2}{5}$ [解析]
(1)
∵$\frac{1}{a} - \frac{1}{b} = 4$,
∴$\frac{b - a}{ab} = 4$,即$b - a = 4ab$,整理,得$a - b = -4ab$,则原式$=\frac{ab}{-4ab} = -\frac{1}{4}$.
(2)
∵$a - b = -4ab$,
∴原式$=\frac{3(a - b) + 2ab}{-12ab + 2ab} = \frac{2}{5}$.
(1)$-\frac{1}{4}$
(2)$\frac{2}{5}$ [解析]
(1)
∵$\frac{1}{a} - \frac{1}{b} = 4$,
∴$\frac{b - a}{ab} = 4$,即$b - a = 4ab$,整理,得$a - b = -4ab$,则原式$=\frac{ab}{-4ab} = -\frac{1}{4}$.
(2)
∵$a - b = -4ab$,
∴原式$=\frac{3(a - b) + 2ab}{-12ab + 2ab} = \frac{2}{5}$.
17. (8分)(唐山期末)计算.
(1)$\frac{x^{2}}{x - 2} - x - 2$
(2)$(\frac{12x}{x - 3} + x - 3) ÷ \frac{x^{2} + 6x + 9}{3x^{2} - 9x}$
(1)$\frac{x^{2}}{x - 2} - x - 2$
(2)$(\frac{12x}{x - 3} + x - 3) ÷ \frac{x^{2} + 6x + 9}{3x^{2} - 9x}$
答案:
$(1)$计算$\frac{x^{2}}{x - 2} - x - 2$
解:
$\begin{aligned}&\frac{x^{2}}{x - 2} - x - 2\\=&\frac{x^{2}}{x - 2} - (x + 2)\\=&\frac{x^{2}}{x - 2} - \frac{(x + 2)(x - 2)}{x - 2}\\=&\frac{x^{2}}{x - 2} - \frac{x^{2}-4}{x - 2}\\=&\frac{x^{2}-(x^{2}-4)}{x - 2}\\=&\frac{x^{2}-x^{2}+4}{x - 2}\\=&\frac{4}{x - 2}\end{aligned}$
$(2)$计算$(\frac{12x}{x - 3} + x - 3) ÷ \frac{x^{2} + 6x + 9}{3x^{2} - 9x}$
解:
先对$\frac{12x}{x - 3} + x - 3$进行通分:
$\begin{aligned}&\frac{12x}{x - 3} + x - 3\\=&\frac{12x}{x - 3}+\frac{(x - 3)(x - 3)}{x - 3}\\=&\frac{12x+(x - 3)^{2}}{x - 3}\\=&\frac{12x+x^{2}-6x + 9}{x - 3}\\=&\frac{x^{2}+6x + 9}{x - 3}\end{aligned}$
再对$\frac{x^{2} + 6x + 9}{3x^{2} - 9x}$化简:$\frac{x^{2} + 6x + 9}{3x^{2} - 9x}=\frac{(x + 3)^{2}}{3x(x - 3)}$。
则原式$=\frac{x^{2}+6x + 9}{x - 3}÷\frac{(x + 3)^{2}}{3x(x - 3)}$
根据除法运算法则$a÷ b=a×\frac{1}{b}$,可得:
$\begin{aligned}&\frac{x^{2}+6x + 9}{x - 3}×\frac{3x(x - 3)}{(x + 3)^{2}}\\=&\frac{(x + 3)^{2}}{x - 3}×\frac{3x(x - 3)}{(x + 3)^{2}}\\=&3x\end{aligned}$
综上,答案依次为$(1)$$\boldsymbol{\frac{4}{x - 2}}$;$(2)$$\boldsymbol{3x}$。
解:
$\begin{aligned}&\frac{x^{2}}{x - 2} - x - 2\\=&\frac{x^{2}}{x - 2} - (x + 2)\\=&\frac{x^{2}}{x - 2} - \frac{(x + 2)(x - 2)}{x - 2}\\=&\frac{x^{2}}{x - 2} - \frac{x^{2}-4}{x - 2}\\=&\frac{x^{2}-(x^{2}-4)}{x - 2}\\=&\frac{x^{2}-x^{2}+4}{x - 2}\\=&\frac{4}{x - 2}\end{aligned}$
$(2)$计算$(\frac{12x}{x - 3} + x - 3) ÷ \frac{x^{2} + 6x + 9}{3x^{2} - 9x}$
解:
先对$\frac{12x}{x - 3} + x - 3$进行通分:
$\begin{aligned}&\frac{12x}{x - 3} + x - 3\\=&\frac{12x}{x - 3}+\frac{(x - 3)(x - 3)}{x - 3}\\=&\frac{12x+(x - 3)^{2}}{x - 3}\\=&\frac{12x+x^{2}-6x + 9}{x - 3}\\=&\frac{x^{2}+6x + 9}{x - 3}\end{aligned}$
再对$\frac{x^{2} + 6x + 9}{3x^{2} - 9x}$化简:$\frac{x^{2} + 6x + 9}{3x^{2} - 9x}=\frac{(x + 3)^{2}}{3x(x - 3)}$。
则原式$=\frac{x^{2}+6x + 9}{x - 3}÷\frac{(x + 3)^{2}}{3x(x - 3)}$
根据除法运算法则$a÷ b=a×\frac{1}{b}$,可得:
$\begin{aligned}&\frac{x^{2}+6x + 9}{x - 3}×\frac{3x(x - 3)}{(x + 3)^{2}}\\=&\frac{(x + 3)^{2}}{x - 3}×\frac{3x(x - 3)}{(x + 3)^{2}}\\=&3x\end{aligned}$
综上,答案依次为$(1)$$\boldsymbol{\frac{4}{x - 2}}$;$(2)$$\boldsymbol{3x}$。
18. (8分)(秦皇岛期中)解方程.
(1)$\frac{x}{x + 1} - 1 = \frac{3}{x - 1}$
(2)$\frac{3}{x + 2} + \frac{2}{x^{2} - 4} = \frac{1}{x - 2}$
(1)$\frac{x}{x + 1} - 1 = \frac{3}{x - 1}$
(2)$\frac{3}{x + 2} + \frac{2}{x^{2} - 4} = \frac{1}{x - 2}$
答案:
18.解:
(1)方程两边同乘$(x + 1)(x - 1)$,得$x(x - 1) - (x + 1)(x - 1) = 3(x + 1)$,解这个方程,得$x = -\frac{1}{2}$.经检验,$x = -\frac{1}{2}$是原分式方程的解.
(2)方程两边同乘$(x + 2)(x - 2)$,得$3(x - 2) + 2 = x + 2$,解这个方程,得$x = 3$.经检验,$x = 3$是原分式方程的解.
(1)方程两边同乘$(x + 1)(x - 1)$,得$x(x - 1) - (x + 1)(x - 1) = 3(x + 1)$,解这个方程,得$x = -\frac{1}{2}$.经检验,$x = -\frac{1}{2}$是原分式方程的解.
(2)方程两边同乘$(x + 2)(x - 2)$,得$3(x - 2) + 2 = x + 2$,解这个方程,得$x = 3$.经检验,$x = 3$是原分式方程的解.
查看更多完整答案,请扫码查看