第8页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
16. (本题12分)已知在 $ \triangle ABC $ 中, $ AB = AC $,点 $ D $ 是边 $ AB $ 上一点, $ \angle BCD = \angle A $.
(1) 如图1,试说明 $ CD = CB $ 的理由;
(2) 如图2,过点 $ B $ 作 $ BE \perp AC $,垂足为点 $ E $, $ BE $ 与 $ CD $ 相交于点 $ F $.
①试说明 $ \angle BCD = 2 \angle CBE $ 的理由;
②如果 $ \triangle BDF $ 是等腰三角形,求 $ \angle A $ 的度数.

(1) 如图1,试说明 $ CD = CB $ 的理由;
(2) 如图2,过点 $ B $ 作 $ BE \perp AC $,垂足为点 $ E $, $ BE $ 与 $ CD $ 相交于点 $ F $.
①试说明 $ \angle BCD = 2 \angle CBE $ 的理由;
②如果 $ \triangle BDF $ 是等腰三角形,求 $ \angle A $ 的度数.
答案:
16. 解:
(1)
∵AB=AC,
∴∠ABC=∠ACB,
∵∠BDC是△ADC的一个外角,
∴∠BDC=∠A+∠ACD,
∵∠ACB=∠BCD+∠ACD,∠BCD=∠A,
∴∠BDC=∠ACB,
∴CD=CB.
(2)①
∵BE⊥AC,
∴∠BEC=90°,
∴∠CBE+∠ACB=90°,
设∠CBE=α,则∠ACB=90°−α,
∴∠ACB=∠ABC=∠BDC=90°−α,
∴∠BCD=180°−∠BDC−∠ABC=180°−(90°−α)−(90°−α)=2α,
∴∠BCD=2∠CBE;
②
∵∠BFD是△CBF的一个外角,
∴∠BFD=∠CBE+∠BCD=α+2α=3α,
分三种情况:
当BD=BF时,
∴∠BDC=∠BFD=3α,
∵∠ACB=∠ABC=∠BDC=90°−α,
∴90°−α=3α,
∴α=22.5°,
∴∠A=∠BCD=2α=45°;
当DB=DF时,
∴∠DBE=∠BFD=3α,
∵∠DBE=∠ABC−∠CBE=90°−α−α=90°−2α,
∴90°−2α=3α,
∴α=18°,
∴∠A=∠BCD=2α=36°;
当FB=FD时,
∴∠DBE=∠BDF,
∵∠BDF=∠ABC>∠DBF,
∴不存在FB=FD,
综上所述:如果△BDF是等腰三角形,∠A的度数为45°或36°.
(1)
∵AB=AC,
∴∠ABC=∠ACB,
∵∠BDC是△ADC的一个外角,
∴∠BDC=∠A+∠ACD,
∵∠ACB=∠BCD+∠ACD,∠BCD=∠A,
∴∠BDC=∠ACB,
∴CD=CB.
(2)①
∵BE⊥AC,
∴∠BEC=90°,
∴∠CBE+∠ACB=90°,
设∠CBE=α,则∠ACB=90°−α,
∴∠ACB=∠ABC=∠BDC=90°−α,
∴∠BCD=180°−∠BDC−∠ABC=180°−(90°−α)−(90°−α)=2α,
∴∠BCD=2∠CBE;
②
∵∠BFD是△CBF的一个外角,
∴∠BFD=∠CBE+∠BCD=α+2α=3α,
分三种情况:
当BD=BF时,
∴∠BDC=∠BFD=3α,
∵∠ACB=∠ABC=∠BDC=90°−α,
∴90°−α=3α,
∴α=22.5°,
∴∠A=∠BCD=2α=45°;
当DB=DF时,
∴∠DBE=∠BFD=3α,
∵∠DBE=∠ABC−∠CBE=90°−α−α=90°−2α,
∴90°−2α=3α,
∴α=18°,
∴∠A=∠BCD=2α=36°;
当FB=FD时,
∴∠DBE=∠BDF,
∵∠BDF=∠ABC>∠DBF,
∴不存在FB=FD,
综上所述:如果△BDF是等腰三角形,∠A的度数为45°或36°.
查看更多完整答案,请扫码查看