2025年资源库高中数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年资源库高中数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年资源库高中数学人教版》

第251页
例539 如图6-3-31,在平行六面体$ABCD-A_{1}B_{1}C_{1}D_{1}$中,$AB=2$,$AA_{1}=3$,$AD=1$,$B_{1}D=\sqrt{15}$,且$\angle DAB=\angle BAA_{1}=\angle DAA_{1}=\frac{\pi}{3}$,求$\overrightarrow {CD_{1}}$与$\overrightarrow {B_{1}D}$夹角的余弦值.
答案: $-\frac{3\sqrt{105}}{70}$
解析:连接$BA_{1}$,由题意,$\overrightarrow {CD_{1}}=\overrightarrow {BA_{1}}=\overrightarrow {AA_{1}}-\overrightarrow {AB}$.
则$|\overrightarrow {CD_{1}}|=\sqrt{(\overrightarrow {AA_{1}}-\overrightarrow {AB})^{2}}=\sqrt{|\overrightarrow {AA_{1}}|^{2}+|\overrightarrow {AB}|^{2}-2\overrightarrow {AA_{1}}\cdot\overrightarrow {AB}}=\sqrt{3^{2}+2^{2}-2×3×2×\frac{1}{2}}=\sqrt{7}$.
$\overrightarrow {CD_{1}}\cdot\overrightarrow {B_{1}D}=(\overrightarrow {AA_{1}}-\overrightarrow {AB})\cdot(\overrightarrow {AD}-\overrightarrow {AB}-\overrightarrow {AA_{1}})=\overrightarrow {AD}\cdot\overrightarrow {AA_{1}}-\overrightarrow {AD}\cdot\overrightarrow {AB}+\overrightarrow {AB}^{2}-\overrightarrow {AA_{1}}^{2}=1×3×\frac{1}{2}-1×2×\frac{1}{2}+2^{2}-3^{2}=-\frac{9}{2}$.
所以$\cos\langle\overrightarrow {CD_{1}},\overrightarrow {B_{1}D}\rangle=\frac{\overrightarrow {CD_{1}}\cdot\overrightarrow {B_{1}D}}{|\overrightarrow {CD_{1}}||\overrightarrow {B_{1}D}|}=\frac{-\frac{9}{2}}{\sqrt{7}×\sqrt{15}}=-\frac{3\sqrt{105}}{70}$.
例540 如图6-3-32,已知线段$AB$在平面$\alpha$内,线段$AC\perp\alpha$于$A$,线段$BD\perp AB$,线段$DD'\perp\alpha$于$D'$,如果$\angle DBD'=30^{\circ}$,$AB=a$,$AC=BD=b$,求$CD$的长.
答案: $\sqrt{a^{2}+3b^{2}}$
解析:由$AC\perp\alpha$,$AB\subset\alpha$,可知$AC\perp AB$.
由$\angle DBD'=30^{\circ}$,可知$\langle\overrightarrow {CA},\overrightarrow {BD}\rangle=60^{\circ}$.
因为$|\overrightarrow {CD}|^{2}=\overrightarrow {CD}\cdot\overrightarrow {CD}=(\overrightarrow {CA}+\overrightarrow {AB}+\overrightarrow {BD})^{2}=|\overrightarrow {CA}|^{2}+|\overrightarrow {AB}|^{2}+|\overrightarrow {BD}|^{2}+2(\overrightarrow {CA}\cdot\overrightarrow {AB}+\overrightarrow {CA}\cdot\overrightarrow {BD}+\overrightarrow {AB}\cdot\overrightarrow {BD})=b^{2}+a^{2}+b^{2}+2(0 + b^{2}\cos60^{\circ}+0)=a^{2}+3b^{2}$.
所以$|\overrightarrow {CD}|=\sqrt{a^{2}+3b^{2}}$,即$CD=\sqrt{a^{2}+3b^{2}}$.
例541 已知矩形$ABCD$,$P$为平面$ABCD$外一点,$M,N$分别为$PC,PD$上的点,且$M$是$PC$上靠近$C$的三等分点,$N$为$PD$的中点,求满足$\overrightarrow {MN}=x\overrightarrow {AB}+y\overrightarrow {AD}+z\overrightarrow {AP}$的实数$x,y,z$的值.
答案: $x=-\frac{2}{3}$,$y=-\frac{1}{6}$,$z=\frac{1}{6}$
解析:方法一:取$PC$的中点$E$,连接$NE$,则$\overrightarrow {MN}=\overrightarrow {EN}-\overrightarrow {EM}$.
$\overrightarrow {EN}=\frac{1}{2}\overrightarrow {CD}=\frac{1}{2}\overrightarrow {BA}=-\frac{1}{2}\overrightarrow {AB}$.
$\overrightarrow {EM}=\overrightarrow {PM}-\overrightarrow {PE}=\frac{2}{3}\overrightarrow {PC}-\frac{1}{2}\overrightarrow {PC}=\frac{1}{6}\overrightarrow {PC}$.
连接$AC$,则$\overrightarrow {PC}=\overrightarrow {AC}-\overrightarrow {AP}=\overrightarrow {AB}+\overrightarrow {AD}-\overrightarrow {AP}$.
所以$\overrightarrow {MN}=-\frac{1}{2}\overrightarrow {AB}-\frac{1}{6}(\overrightarrow {AB}+\overrightarrow {AD}-\overrightarrow {AP})=-\frac{2}{3}\overrightarrow {AB}-\frac{1}{6}\overrightarrow {AD}+\frac{1}{6}\overrightarrow {AP}$.
因为$\overrightarrow {AB},\overrightarrow {AD},\overrightarrow {AP}$不共面,所以$x=-\frac{2}{3}$,$y=-\frac{1}{6}$,$z=\frac{1}{6}$.
方法二:$\overrightarrow {MN}=\overrightarrow {PN}-\overrightarrow {PM}=\frac{1}{2}\overrightarrow {PD}-\frac{2}{3}\overrightarrow {PC}=\frac{1}{2}(\overrightarrow {PA}+\overrightarrow {AD})-\frac{2}{3}(\overrightarrow {PA}+\overrightarrow {AC})=-\frac{1}{2}\overrightarrow {AP}+\frac{1}{2}\overrightarrow {AD}-\frac{2}{3}(-\overrightarrow {AP}+\overrightarrow {AB}+\overrightarrow {AD})=-\frac{2}{3}\overrightarrow {AB}-\frac{1}{6}\overrightarrow {AD}+\frac{1}{6}\overrightarrow {AP}$.
因为$\overrightarrow {AB},\overrightarrow {AD},\overrightarrow {AP}$不共面,所以$x=-\frac{2}{3}$,$y=-\frac{1}{6}$,$z=\frac{1}{6}$.

查看更多完整答案,请扫码查看

关闭