7. 如图,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$D是AB$的中点,过点$D作AB$的垂线,交$AC于点E$,$BC = 6$,$\sin A= \frac{3}{5}$. 求$DE$的长.

答案:
解:
∵BC = 6,sinA = $\frac{3}{5}$,∠C = 90°,
∴AB = 10,
∴AC = $\sqrt{AB^{2}-BC^{2}}$ = 8.
∵D是AB的中点,
∴AD = $\frac{1}{2}$AB = 5.
∵∠ADE = ∠C = 90°,∠A = ∠A,
∴△ADE∽△ACB,
∴$\frac{DE}{CB}$ = $\frac{AD}{AC}$,即$\frac{DE}{6}$ = $\frac{5}{8}$,
∴DE = $\frac{15}{4}$.
∵BC = 6,sinA = $\frac{3}{5}$,∠C = 90°,
∴AB = 10,
∴AC = $\sqrt{AB^{2}-BC^{2}}$ = 8.
∵D是AB的中点,
∴AD = $\frac{1}{2}$AB = 5.
∵∠ADE = ∠C = 90°,∠A = ∠A,
∴△ADE∽△ACB,
∴$\frac{DE}{CB}$ = $\frac{AD}{AC}$,即$\frac{DE}{6}$ = $\frac{5}{8}$,
∴DE = $\frac{15}{4}$.
8. 如图,在半径为$3的\odot O$中,直径$AB与弦CD相交于点E$,连结$AC$,$BD$. 若$AC = 2$,求$\tan D$.

答案:
解:如答图,连结BC;
∵AB是⊙O的直径,
∴∠ACB = 90°.
∵AB = 2×3 = 6,AC = 2,
∴BC = $\sqrt{AB^{2}-AC^{2}}$ = 4$\sqrt{2}$
又
∵∠D = ∠A,
∴tanD = tanA = $\frac{BC}{AC}$ = 2$\sqrt{2}$
解:如答图,连结BC;
∵AB是⊙O的直径,
∴∠ACB = 90°.
∵AB = 2×3 = 6,AC = 2,
∴BC = $\sqrt{AB^{2}-AC^{2}}$ = 4$\sqrt{2}$
又
∵∠D = ∠A,
∴tanD = tanA = $\frac{BC}{AC}$ = 2$\sqrt{2}$
9. [原创]如图,在平面直角坐标系中,点$A(x,y)$在第一象限,线段$OA绕点O$在第一象限内旋转.
(1)用含$x$,$y的代数式表示\sin\alpha$,$\cos\alpha$,$\tan\alpha$.
(2)若$OA = 5$,$x + y = 7$,求$\sin\alpha$的值.

(1)用含$x$,$y的代数式表示\sin\alpha$,$\cos\alpha$,$\tan\alpha$.
(2)若$OA = 5$,$x + y = 7$,求$\sin\alpha$的值.
答案:
解:
(1)如答图,过点A作AB⊥x轴于点B.
由题意,得OB = x,AB = y,
∴在Rt△AOB中,OA = $\sqrt{OB^{2}+AB^{2}}$ = $\sqrt{x^{2}+y^{2}}$
∴sinα = $\frac{AB}{OA}$ = $\frac{y}{\sqrt{x^{2}+y^{2}}}$,cosα = $\frac{OB}{OA}$ = $\frac{x}{\sqrt{x^{2}+y^{2}}}$,tanα = $\frac{AB}{OB}$ = $\frac{y}{x}$.
(2)
∵x + y = 7,
∴y = 7 - x.
又
∵OA = 5,
∴x²+(7 - x)² = 5²,解得x₁ = 3,x₂ = 4.
当x = 3时,y = 4,
∴sinα = $\frac{4}{5}$;当x = 4时,y = 3,
∴sinα = $\frac{3}{5}$.综上所述,sinα的值为$\frac{4}{5}$或$\frac{3}{5}$.
解:
(1)如答图,过点A作AB⊥x轴于点B.
由题意,得OB = x,AB = y,
∴在Rt△AOB中,OA = $\sqrt{OB^{2}+AB^{2}}$ = $\sqrt{x^{2}+y^{2}}$
∴sinα = $\frac{AB}{OA}$ = $\frac{y}{\sqrt{x^{2}+y^{2}}}$,cosα = $\frac{OB}{OA}$ = $\frac{x}{\sqrt{x^{2}+y^{2}}}$,tanα = $\frac{AB}{OB}$ = $\frac{y}{x}$.
(2)
∵x + y = 7,
∴y = 7 - x.
又
∵OA = 5,
∴x²+(7 - x)² = 5²,解得x₁ = 3,x₂ = 4.
当x = 3时,y = 4,
∴sinα = $\frac{4}{5}$;当x = 4时,y = 3,
∴sinα = $\frac{3}{5}$.综上所述,sinα的值为$\frac{4}{5}$或$\frac{3}{5}$.
10. 如图①,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$\angle A$,$\angle B$,$\angle C的对边分别为a$,$b$,$c$. 以下是小亮探究$\frac{a}{\sin A}与\frac{b}{\sin B}$之间的数量关系的过程:
$\because \sin A= \frac{a}{c}$,$\sin B= \frac{b}{c}$,$\therefore c= \frac{a}{\sin A}$,$c= \frac{b}{\sin B}$,
$\therefore \frac{a}{\sin A}= \frac{b}{\sin B}$.
根据你掌握的三角函数知识,在如图②所示的锐角$\triangle ABC$中,探究$\frac{a}{\sin A}$,$\frac{b}{\sin B}$,$\frac{c}{\sin C}$之间的数量关系,并写出探究过程.

$\because \sin A= \frac{a}{c}$,$\sin B= \frac{b}{c}$,$\therefore c= \frac{a}{\sin A}$,$c= \frac{b}{\sin B}$,
$\therefore \frac{a}{\sin A}= \frac{b}{\sin B}$.
根据你掌握的三角函数知识,在如图②所示的锐角$\triangle ABC$中,探究$\frac{a}{\sin A}$,$\frac{b}{\sin B}$,$\frac{c}{\sin C}$之间的数量关系,并写出探究过程.
答案:
解:如答图,过点B作BD⊥AC于点D.
在Rt△ABD和Rt△BCD中,
BD = c·sinA,BD = a·sinC,
∴c·sinA = a·sinC,
即$\frac{a}{\sin A}$ = $\frac{c}{\sin C}$.
同理,$\frac{b}{\sin B}$ = $\frac{c}{\sin C}$,
∴$\frac{a}{\sin A}$ = $\frac{b}{\sin B}$ = $\frac{c}{\sin C}$.
解:如答图,过点B作BD⊥AC于点D.
在Rt△ABD和Rt△BCD中,
BD = c·sinA,BD = a·sinC,
∴c·sinA = a·sinC,
即$\frac{a}{\sin A}$ = $\frac{c}{\sin C}$.
同理,$\frac{b}{\sin B}$ = $\frac{c}{\sin C}$,
∴$\frac{a}{\sin A}$ = $\frac{b}{\sin B}$ = $\frac{c}{\sin C}$.
查看更多完整答案,请扫码查看