第26页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
21. 小明利用图甲装置研究某燃料热值. 他取少量燃料置于燃烧皿中,测出总质量为 30g,点燃后对 100g 热水加热 4min,立即熄灭燃料,再测得燃料和燃烧皿总质量为 25.8g,并根据实验数据绘制了水温随时间变化的图像如图乙中 a 线所示.

(1)在 2~4min 时间内,水
(2)已知此过程中燃料均匀燃烧放热,所放热量仅 60%能被水吸收,4min 内水吸收的热量为
(3)若实验装置和热损失比例均不变,利用该燃料加热另一杯水,绘出了图乙中的 b 线,则这杯水的质量
(4)用此方法计算的燃料的热值比实际值
(1)在 2~4min 时间内,水
吸
(选填“吸”或“不吸”)热.(2)已知此过程中燃料均匀燃烧放热,所放热量仅 60%能被水吸收,4min 内水吸收的热量为
5040
J,则该燃料的热值为$2× 10^{6}$
J/kg.(整个过程中忽略水的质量变化.)(3)若实验装置和热损失比例均不变,利用该燃料加热另一杯水,绘出了图乙中的 b 线,则这杯水的质量
等于
(选填“大于”“等于”或“小于”)上一杯水的质量.(4)用此方法计算的燃料的热值比实际值
偏小
(选填“偏大”或“偏小”). 理由是燃料不能完全燃烧
.
答案:
(1)吸
(2)5040 $2× 10^{6}$
(3)等于
(4)偏小 燃料不能完全燃烧
(1)吸
(2)5040 $2× 10^{6}$
(3)等于
(4)偏小 燃料不能完全燃烧
22. 某学习小组的几位同学想研究酒精灯烧水时的热效率. 他们用酒精灯给 100g 初温为 20℃的水加热,经过一段时间测得水温升高了 60℃,消耗了 4.2g 酒精. 已知酒精的热值为$ 3×10^7J/kg. $求:
(1)此过程中水吸收的热量;
(2)4.2g 酒精完全燃烧放出的热量;
(3)酒精灯烧水时的热效率.
(1)此过程中水吸收的热量;
(2)4.2g 酒精完全燃烧放出的热量;
(3)酒精灯烧水时的热效率.
答案:
解:
(1)水的质量$m_{水}=100g = 0.1kg$,
根据热量计算公式$Q_{吸}=c_{水}m_{水}\Delta t$($c_{水}=4.2×10^{3}J/(kg\cdot^{\circ}C)$,$\Delta t = 60^{\circ}C$),
可得$Q_{吸}=4.2×10^{3}J/(kg\cdot^{\circ}C)×0.1kg×60^{\circ}C = 2.52×10^{4}J$。
(2)酒精的质量$m_{酒精}=4.2g = 4.2×10^{-3}kg$,
根据燃料完全燃烧放热公式$Q_{放}=m_{酒精}q$($q = 3×10^{7}J/kg$),
可得$Q_{放}=4.2×10^{-3}kg×3×10^{7}J/kg = 1.26×10^{5}J$。
(3)根据热效率公式$\eta=\frac{Q_{吸}}{Q_{放}}×100\%$,
可得$\eta=\frac{2.52×10^{4}J}{1.26×10^{5}J}×100\% = 20\%$。
综上,(1)水吸收的热量为$2.52×10^{4}J$;(2)酒精完全燃烧放出的热量为$1.26×10^{5}J$;(3)酒精灯烧水时的热效率为$20\%$。
(1)水的质量$m_{水}=100g = 0.1kg$,
根据热量计算公式$Q_{吸}=c_{水}m_{水}\Delta t$($c_{水}=4.2×10^{3}J/(kg\cdot^{\circ}C)$,$\Delta t = 60^{\circ}C$),
可得$Q_{吸}=4.2×10^{3}J/(kg\cdot^{\circ}C)×0.1kg×60^{\circ}C = 2.52×10^{4}J$。
(2)酒精的质量$m_{酒精}=4.2g = 4.2×10^{-3}kg$,
根据燃料完全燃烧放热公式$Q_{放}=m_{酒精}q$($q = 3×10^{7}J/kg$),
可得$Q_{放}=4.2×10^{-3}kg×3×10^{7}J/kg = 1.26×10^{5}J$。
(3)根据热效率公式$\eta=\frac{Q_{吸}}{Q_{放}}×100\%$,
可得$\eta=\frac{2.52×10^{4}J}{1.26×10^{5}J}×100\% = 20\%$。
综上,(1)水吸收的热量为$2.52×10^{4}J$;(2)酒精完全燃烧放出的热量为$1.26×10^{5}J$;(3)酒精灯烧水时的热效率为$20\%$。
23. 完全燃烧 70g 酒精可以释放出$ 2.1×10^6J $的热量. 假设所放出的热量中有 60%被质量为 5kg、温度为 20℃的水所吸收.
(1)求酒精的热值.
(2)水温可以升高多少?
(1)求酒精的热值.
(2)水温可以升高多少?
答案:
$(1)$ 求酒精的热值
- 解:
已知酒精质量$m = 70g=0.07kg$,完全燃烧放出热量$Q_{放}=2.1× 10^{6}J$。
根据热值公式$q=\frac{Q_{放}}{m}$(其中$q$为热值,$Q_{放}$为燃料完全燃烧放出的热量,$m$为燃料质量),可得酒精的热值:
$q=\frac{Q_{放}}{m}=\frac{2.1× 10^{6}J}{0.07kg}=3× 10^{7}J/kg$。
$(2)$ 求水温升高多少
- 解:
已知热量利用率$\eta = 60\%$,水的质量$m_{水}=5kg$。
第一步:先求水吸收的热量$Q_{吸}$
根据$Q_{吸}=\eta Q_{放}$,可得$Q_{吸}=60\%×2.1× 10^{6}J = 1.26× 10^{6}J$。
第二步:再根据吸热公式$Q_{吸}=c_{水}m_{水}\Delta t$(其中$c_{水}=4.2× 10^{3}J/(kg\cdot^{\circ}C)$为水的比热容,$\Delta t$为温度变化量)求水温升高值$\Delta t$
由$\Delta t=\frac{Q_{吸}}{c_{水}m_{水}}$,将$Q_{吸}=1.26× 10^{6}J$,$c_{水}=4.2× 10^{3}J/(kg\cdot^{\circ}C)$,$m_{水}=5kg$代入可得:
$\Delta t=\frac{1.26× 10^{6}J}{4.2× 10^{3}J/(kg\cdot^{\circ}C)×5kg}=60^{\circ}C$。
综上,答案依次为:$(1)$ 酒精的热值为$\boldsymbol{3× 10^{7}J/kg}$;$(2)$ 水温可以升高$\boldsymbol{60^{\circ}C}$。
- 解:
已知酒精质量$m = 70g=0.07kg$,完全燃烧放出热量$Q_{放}=2.1× 10^{6}J$。
根据热值公式$q=\frac{Q_{放}}{m}$(其中$q$为热值,$Q_{放}$为燃料完全燃烧放出的热量,$m$为燃料质量),可得酒精的热值:
$q=\frac{Q_{放}}{m}=\frac{2.1× 10^{6}J}{0.07kg}=3× 10^{7}J/kg$。
$(2)$ 求水温升高多少
- 解:
已知热量利用率$\eta = 60\%$,水的质量$m_{水}=5kg$。
第一步:先求水吸收的热量$Q_{吸}$
根据$Q_{吸}=\eta Q_{放}$,可得$Q_{吸}=60\%×2.1× 10^{6}J = 1.26× 10^{6}J$。
第二步:再根据吸热公式$Q_{吸}=c_{水}m_{水}\Delta t$(其中$c_{水}=4.2× 10^{3}J/(kg\cdot^{\circ}C)$为水的比热容,$\Delta t$为温度变化量)求水温升高值$\Delta t$
由$\Delta t=\frac{Q_{吸}}{c_{水}m_{水}}$,将$Q_{吸}=1.26× 10^{6}J$,$c_{水}=4.2× 10^{3}J/(kg\cdot^{\circ}C)$,$m_{水}=5kg$代入可得:
$\Delta t=\frac{1.26× 10^{6}J}{4.2× 10^{3}J/(kg\cdot^{\circ}C)×5kg}=60^{\circ}C$。
综上,答案依次为:$(1)$ 酒精的热值为$\boldsymbol{3× 10^{7}J/kg}$;$(2)$ 水温可以升高$\boldsymbol{60^{\circ}C}$。
查看更多完整答案,请扫码查看