2025年全练单元卷九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
26. (10分)如图,已知一次函数$y = \frac{3}{2}x - 3$的图象与反比例函数$y = \frac{k}{x}$的图象相交于点$A(4,n)$,与$x$轴交于点$B$.
(1)填空:$n$的值为______,$k$的值为______;
(2)以$AB$为边作菱形$ABCD$,使点$C$在$x$轴正半轴上,点$D$在第一象限,求点$D$的坐标;
(3)结合反比例函数$y = \frac{k}{x}$的图象,当$y \geq - 2$时,请直接写出自变量$x$的取值范围.

(1)填空:$n$的值为______,$k$的值为______;
(2)以$AB$为边作菱形$ABCD$,使点$C$在$x$轴正半轴上,点$D$在第一象限,求点$D$的坐标;
(3)结合反比例函数$y = \frac{k}{x}$的图象,当$y \geq - 2$时,请直接写出自变量$x$的取值范围.
答案:
解:
(1)把点$A(4,n)$代入一次函数$y = \frac{3}{2}x - 3$,可得$n = \frac{3}{2} \times 4 - 3 = 3$;
把点$A(4,3)$代入反比例函数$y = \frac{k}{x}$,可得$3 = \frac{k}{4}$,
解得$k = 12$;
(2)
∵一次函数$y = \frac{3}{2}x - 3$与$x$轴相交于点$B$,
∴$\frac{3}{2}x - 3 = 0$,解得$x = 2$,
∴点$B$的坐标为$(2,0)$,
过点$A$作$AE\perp x$轴,垂足为$E$,
过点$D$作$DF\perp x$轴,垂足为$F$,
∵$A(4,3)$,$B(2,0)$,
∴$OE = 4$,$AE = 3$,$OB = 2$,
∴$BE = OE - OB = 4 - 2 = 2$,
在$Rt\triangle ABE$中,
$AB = \sqrt{AE^{2} + BE^{2}} = \sqrt{3^{2} + 2^{2}} = \sqrt{13}$,
∵四边形$ABCD$是菱形,
∴$AB = CD = BC = AD = \sqrt{13}$,$AB// CD$,$AD// BC$,
∴$\angle ABE = \angle DCF$,
∵$AE\perp x$轴,$DF\perp x$轴,
∴$\angle AEB = \angle DFC = 90^{\circ}$,
∴四边形$AEFD$为矩形,
∴$AD = EF = \sqrt{13}$,$AE = DF = 3$,
∴$OF = OE + EF = 4 + \sqrt{13}$,
∴点$D$的坐标为$(4 + \sqrt{13},3)$;
(3)当$y = -2$时,$-2 = \frac{12}{x}$,解得$x = -6$.
故当$y\geq -2$时,自变量$x$的取值范围是$x\leq -6$或$x > 0$.

解:
(1)把点$A(4,n)$代入一次函数$y = \frac{3}{2}x - 3$,可得$n = \frac{3}{2} \times 4 - 3 = 3$;
把点$A(4,3)$代入反比例函数$y = \frac{k}{x}$,可得$3 = \frac{k}{4}$,
解得$k = 12$;
(2)
∵一次函数$y = \frac{3}{2}x - 3$与$x$轴相交于点$B$,
∴$\frac{3}{2}x - 3 = 0$,解得$x = 2$,
∴点$B$的坐标为$(2,0)$,
过点$A$作$AE\perp x$轴,垂足为$E$,
过点$D$作$DF\perp x$轴,垂足为$F$,
∵$A(4,3)$,$B(2,0)$,
∴$OE = 4$,$AE = 3$,$OB = 2$,
∴$BE = OE - OB = 4 - 2 = 2$,
在$Rt\triangle ABE$中,
$AB = \sqrt{AE^{2} + BE^{2}} = \sqrt{3^{2} + 2^{2}} = \sqrt{13}$,
∵四边形$ABCD$是菱形,
∴$AB = CD = BC = AD = \sqrt{13}$,$AB// CD$,$AD// BC$,
∴$\angle ABE = \angle DCF$,
∵$AE\perp x$轴,$DF\perp x$轴,
∴$\angle AEB = \angle DFC = 90^{\circ}$,
∴四边形$AEFD$为矩形,
∴$AD = EF = \sqrt{13}$,$AE = DF = 3$,
∴$OF = OE + EF = 4 + \sqrt{13}$,
∴点$D$的坐标为$(4 + \sqrt{13},3)$;
(3)当$y = -2$时,$-2 = \frac{12}{x}$,解得$x = -6$.
故当$y\geq -2$时,自变量$x$的取值范围是$x\leq -6$或$x > 0$.
查看更多完整答案,请扫码查看