2025年全练单元卷九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全练单元卷九年级数学下册人教版》

25. (10分)已知二次函数$y = ax^{2}-2ax + c(a\gt0)$的图象与$x$轴的负半轴和正半轴分别交于$A$,$B$两点,与$y$轴交于点$C$,它的顶点坐标为$P$,直线$CP$与过点$B$且垂直于$x$轴的直线交于点$D$,且$CP:PD = 2:3$.
(1)求$A$,$B$两点的坐标;
(2)若$\tan\angle PDB = \frac{5}{4}$,求这个二次函数的关系式.
                              
答案:
解:
(1)过点$P$作$PE\perp x$轴于点$E$,$\because y = ax^{2}-2ax + c$,$\therefore$该二次函数的对称轴为$x = 1,\therefore OE = 1$,$\because OC// BD,\therefore CP:PD = OE:EB$,$\therefore OE:EB = 2:3$,$\therefore EB=\frac{3}{2},\therefore OB = OE + EB=\frac{5}{2},\therefore B(\frac{5}{2},0)$,$\because A$与$B$关于直线$x = 1$对称,$\therefore A(-\frac{1}{2},0)$;
(2)过点$C$作$CF\perp BD$于点$F$,交$PE$于点$G$,令$x = 1$代入$y = ax^{2}-2ax + c$,$\therefore y = c - a$,令$x = 0$代入$y = ax^{2}-2ax + c$,$\therefore y = c,\therefore PG = a$,$\because CF = OB=\frac{5}{2}$,$\therefore \tan\angle PDB=\frac{CF}{FD},\therefore FD = 2$,

$\because PG// BD,\therefore \triangle CPG\sim\triangle CDF$,$\therefore \frac{PG}{FD}=\frac{CP}{CD}=\frac{2}{5},\therefore PG=\frac{4}{5}$,$\therefore a=\frac{4}{5},\therefore y=\frac{4}{5}x^{2}-\frac{8}{5}x + c$,把$A(-\frac{1}{2},0)$代入$y=\frac{4}{5}x^{2}-\frac{8}{5}x + c$,解得$c = -1$,$\therefore$该二次函数解析式为$y=\frac{4}{5}x^{2}-\frac{8}{5}x - 1$.

查看更多完整答案,请扫码查看

关闭