2025年全练单元卷九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全练单元卷九年级数学下册人教版》

27. (10分)如图,在等腰三角形$ABC$中,$\angle BAC = 120^{\circ}$,$AB = AC = 2$,点$D$是$BC$边上的一个动点(不与$B$,$C$重合),在$AC$上取一点$E$,使$\angle ADE = 30^{\circ}$。设$BD = x$,$AE = y$。
(1)求证:$\triangle ABD\sim\triangle DCE$;
(2)求$y$关于$x$的函数关系式并写出自变量$x$的取值范围;
(3)当$\triangle ADE$是等腰三角形时,求$AE$的长.
CB备用图
答案:

(1)证明:$\because \triangle ABC$是等腰三角形,且$\angle BAC = 120^{\circ}$,$\therefore \angle ABD=\angle ACB = 30^{\circ}$,$\therefore \angle ABD=\angle ADE = 30^{\circ}$,$\because \angle ADC=\angle ADE+\angle EDC=\angle ABD+\angle DAB$,$\therefore \angle EDC=\angle DAB$,$\therefore \triangle ABD\sim\triangle DCE$;
(2)解:如图1,$\because AB = AC = 2$,$\angle BAC = 120^{\circ}$,过$A$作$AF\perp BC$于$F$,$\therefore \angle AFB = 90^{\circ}$,
图1
$\because AB = 2$,$\angle ABF = 30^{\circ}$,$\therefore AF=\frac{1}{2}AB = 1$,$\therefore BF=\sqrt{3}$,$\therefore BC = 2BF = 2\sqrt{3}$,则$DC = 2\sqrt{3}-x$,$EC = 2 - y$,$\because \triangle ABD\sim\triangle DCE$,$\therefore \frac{AB}{DC}=\frac{BD}{CE}$,$\therefore \frac{2}{2\sqrt{3}-x}=\frac{x}{2 - y}$,化简得$y=\frac{1}{2}x^{2}-\sqrt{3}x + 2(0\lt x\lt 2\sqrt{3})$;
(3)解:当$AD = DE$时,如图2,


(1)可知,此时$\triangle ABD\sim\triangle DCE$,则$AB = CD$,即$2 = 2\sqrt{3}-x$,$x = 2\sqrt{3}-2$,代入$y=\frac{1}{2}x^{2}-\sqrt{3}x + 2$,解得$y = 4 - 2\sqrt{3}$,即$AE = 4 - 2\sqrt{3}$,当$AE = ED$时,如图3,$\angle EAD=\angle EDA = 30^{\circ}$,$\angle AED = 120^{\circ}$,
图3
$\therefore \angle DEC = 60^{\circ}$,$\angle EDC = 90^{\circ}$,则$ED=\frac{1}{2}EC$,即$y=\frac{1}{2}(2 - y)$,解得$y=\frac{2}{3}$,即$AE=\frac{2}{3}$,当$AD = AE$时,$\angle AED=\angle EDA = 30^{\circ}$,$\angle EAD = 120^{\circ}$,此时点$D$与点$B$重合,不符合题意,此情况不存在,$\therefore$当$\triangle ADE$是等腰三角形时,$AE = 4 - 2\sqrt{3}$或$\frac{2}{3}$.

查看更多完整答案,请扫码查看

关闭