2025年全练单元卷九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全练单元卷九年级数学下册人教版》

23. (6分)如图,小明同学在东西走向的环海路$A$处,测得海中灯塔$P$在它的北偏东$60^{\circ}$方向上,在$A$的正东400米的$B$处,测得海中灯塔$P$在它的北偏东$30^{\circ}$方向上. 求灯塔$P$到环海路的距离. ($\sqrt{3}$取1.732,结果精确到1米)
   
答案:
解:过点$P$作$PC\perp AB$交$AB$的延长线于点$C$,

由题意得,$\angle PAC = 30^{\circ},\angle PBC = 60^{\circ}$,$\therefore \angle APB=\angle PBC - \angle PAC = 30^{\circ}$,$\therefore \angle PAC=\angle APB$,$\therefore PB = AB = 400$米. 在$Rt\triangle PBC$中,$\angle PCB = 90^{\circ},\angle PBC = 60^{\circ},PB = 400$米,$\therefore PC = PB\cdot\sin\angle PBC = 400×\frac{\sqrt{3}}{2}=200\sqrt{3}\approx346.4\approx346$(米).
24. (8分)如图,在$\square ABCD$中过点$A$作$AE\perp DC$,垂足为$E$,连接$BE$,$F$为$BE$上一点,且$\angle AFE = \angle D$.
(1)求证:$\triangle ABF\sim\triangle BEC$;
(2)若$AD = 5$,$AB = 8$,$\sin D = \frac{4}{5}$,求$AF$的长.
   
答案:
(1)证明:$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD,AD// BC$,$\therefore \angle D+\angle C = 180^{\circ},\angle ABF=\angle BEC$,$\because \angle AFB+\angle AFE = 180^{\circ},\angle AFE=\angle D$,$\therefore \angle C=\angle AFB,\therefore \triangle ABF\sim\triangle BEC$;
(2)解:$\because AE\perp DC,AB// DC$,$\therefore \angle AED=\angle BAE = 90^{\circ}$,在$Rt\triangle ABE$中,根据勾股定理得$BE=\sqrt{AE^{2}+AB^{2}}=\sqrt{4^{2}+8^{2}} = 4\sqrt{5}$,在$Rt\triangle ADE$中,$AE = AD\cdot\sin D = 5×\frac{4}{5}=4$,$\because BC = AD = 5$,由
(1)得$\triangle ABF\sim\triangle BEC$,$\therefore \frac{AF}{BC}=\frac{AB}{BE}$,即$\frac{AF}{5}=\frac{8}{4\sqrt{5}}$,解得$AF = 2\sqrt{5}$.

查看更多完整答案,请扫码查看

关闭