2025年全练单元卷九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
24. (8分)如图,等边$\triangle OAB$和等边$\triangle AFE$的一边都在$x$轴上,反比例函数$y=\frac{k}{x}(x>0)$经过边$OB$的中点$C$和$AE$中点$D$,已知等边$\triangle OAB$的边长为8.
(1)求反比例函数的解析式;
(2)求等边$\triangle AFE$的周长.

(1)求反比例函数的解析式;
(2)求等边$\triangle AFE$的周长.
答案:
解:
(1)过$C$作$CM\perp OA$,
$\because \triangle OAB$为边长为$8$的等边三角形,$C$为$OB$中点,
$\therefore OC = 4$,$\angle BOA = 60^{\circ}$,
$\therefore \angle OCM = 30^{\circ}$,
$\therefore OM=\frac{1}{2}OC = 2$,
由勾股定理得$CM = 2\sqrt{3}$,
$\therefore C(2,2\sqrt{3})$,
代入反比例函数的解析式得$k = 4\sqrt{3}$,
则反比例函数的解析式为$y = \frac{4\sqrt{3}}{x}$;
(2)过点$D$作$DH\perp AF$,垂足为点$H$,设$AH = a(a > 0)$.
在$Rt\triangle DAH$中,$\because \angle DAH = 60^{\circ}$,$\therefore \angle ADH = 30^{\circ}$.
$\therefore AD = 2AH = 2a$,
由勾股定理得$DH = \sqrt{3}a$.
$\because$点$D$在第一象限,
$\therefore$点$D$的坐标为$(8 + a,\sqrt{3}a)$.
$\because$点$D$在反比例函数$y = \frac{4\sqrt{3}}{x}$的图象上,
$\therefore$把$x = 8 + a$,$y = \sqrt{3}a$代入反比例函数解析式,
解得$a = 2\sqrt{5}-4$($a = - 2\sqrt{5}-4 < 0$不符题意,舍去).
$\therefore AD = 4\sqrt{5}-8$,
$\because$点$D$是$AE$中点,
$\therefore AE = 2AD = 8\sqrt{5}-16$,
$\therefore \triangle AEF$的周长为$24\sqrt{5}-48$.

解:
(1)过$C$作$CM\perp OA$,
$\because \triangle OAB$为边长为$8$的等边三角形,$C$为$OB$中点,
$\therefore OC = 4$,$\angle BOA = 60^{\circ}$,
$\therefore \angle OCM = 30^{\circ}$,
$\therefore OM=\frac{1}{2}OC = 2$,
由勾股定理得$CM = 2\sqrt{3}$,
$\therefore C(2,2\sqrt{3})$,
代入反比例函数的解析式得$k = 4\sqrt{3}$,
则反比例函数的解析式为$y = \frac{4\sqrt{3}}{x}$;
(2)过点$D$作$DH\perp AF$,垂足为点$H$,设$AH = a(a > 0)$.
在$Rt\triangle DAH$中,$\because \angle DAH = 60^{\circ}$,$\therefore \angle ADH = 30^{\circ}$.
$\therefore AD = 2AH = 2a$,
由勾股定理得$DH = \sqrt{3}a$.
$\because$点$D$在第一象限,
$\therefore$点$D$的坐标为$(8 + a,\sqrt{3}a)$.
$\because$点$D$在反比例函数$y = \frac{4\sqrt{3}}{x}$的图象上,
$\therefore$把$x = 8 + a$,$y = \sqrt{3}a$代入反比例函数解析式,
解得$a = 2\sqrt{5}-4$($a = - 2\sqrt{5}-4 < 0$不符题意,舍去).
$\therefore AD = 4\sqrt{5}-8$,
$\because$点$D$是$AE$中点,
$\therefore AE = 2AD = 8\sqrt{5}-16$,
$\therefore \triangle AEF$的周长为$24\sqrt{5}-48$.
查看更多完整答案,请扫码查看