2025年全练单元卷九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
26. (10分)如图,在矩形$ABCD$中,$E$为$AB$边上一点,$EC$平分$\angle DEB$,$F$为$CE$的中点,连接$AF$,$BF$,过点$E$作$EH// BC$分别交$AF$,$CD$于$G$,$H$两点。
(1)求证:$DE = DC$;
(2)求证:$AF\perp BF$;
(3)当$AF\cdot GF = 28$时,请直接写出$CE$的长.
(1)求证:$DE = DC$;
(2)求证:$AF\perp BF$;
(3)当$AF\cdot GF = 28$时,请直接写出$CE$的长.
答案:
(1)证明:$\because$四边形$ABCD$是矩形,$\therefore AB// CD$,$\therefore \angle DCE=\angle CEB$,$\because EC$平分$\angle DEB$,$\therefore \angle DEC=\angle CEB$,$\therefore \angle DCE=\angle DEC$,$\therefore DE = DC$;
(2)证明:连接$DF$,
$\because DE = DC$,$F$为$CE$的中点,$\therefore DF\perp EC$,$\therefore \angle DFC = 90^{\circ}$,在矩形$ABCD$中,$AB = DC$,$\angle ABC = 90^{\circ}$,$\therefore BF = CF = EF=\frac{1}{2}EC$,$\therefore \angle ABF=\angle CEB$,$\because \angle DCE=\angle CEB$,$\therefore \angle ABF=\angle DCF$,在$\triangle ABF$和$\triangle DCF$中,$\begin{cases}BF = CF\\\angle ABF=\angle DCF\\AB = DC\end{cases}$,$\therefore \triangle ABF\cong\triangle DCF(SAS)$,$\therefore \angle AFB=\angle DFC = 90^{\circ}$,$\therefore AF\perp BF$;
(3)解:$CE = 4\sqrt{7}$.理由如下:$\because AF\perp BF$,$\therefore \angle BAF+\angle ABF = 90^{\circ}$,$\because EH// BC$,$\angle ABC = 90^{\circ}$,$\therefore \angle BEH = 90^{\circ}$,$\therefore \angle FEH+\angle CEB = 90^{\circ}$,$\because \angle ABF=\angle CEB$,$\therefore \angle BAF=\angle FEH$,$\because \angle EFG=\angle AFE$,$\therefore \triangle EFG\sim\triangle AFE$,$\therefore \frac{GF}{EF}=\frac{EF}{AF}$,即$EF^{2}=AF\cdot GF$,$\because AF\cdot GF = 28$,$\therefore EF = 2\sqrt{7}$,$\therefore CE = 2EF = 4\sqrt{7}$.
(1)证明:$\because$四边形$ABCD$是矩形,$\therefore AB// CD$,$\therefore \angle DCE=\angle CEB$,$\because EC$平分$\angle DEB$,$\therefore \angle DEC=\angle CEB$,$\therefore \angle DCE=\angle DEC$,$\therefore DE = DC$;
(2)证明:连接$DF$,
(3)解:$CE = 4\sqrt{7}$.理由如下:$\because AF\perp BF$,$\therefore \angle BAF+\angle ABF = 90^{\circ}$,$\because EH// BC$,$\angle ABC = 90^{\circ}$,$\therefore \angle BEH = 90^{\circ}$,$\therefore \angle FEH+\angle CEB = 90^{\circ}$,$\because \angle ABF=\angle CEB$,$\therefore \angle BAF=\angle FEH$,$\because \angle EFG=\angle AFE$,$\therefore \triangle EFG\sim\triangle AFE$,$\therefore \frac{GF}{EF}=\frac{EF}{AF}$,即$EF^{2}=AF\cdot GF$,$\because AF\cdot GF = 28$,$\therefore EF = 2\sqrt{7}$,$\therefore CE = 2EF = 4\sqrt{7}$.
查看更多完整答案,请扫码查看