2025年全练单元卷九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
26. (10分)如图,反比例函数$y = \frac{m}{x}(x\gt0)$的图象经过线段$OA$的端点$A$,$O$为原点,作$AB\perp x$轴于点$B$,点$B$的坐标为$(2,0)$,$\tan\angle AOB = \frac{3}{2}$.
(1)求$m$的值;
(2)线段$AB$为边向右作矩形$ABCD$,反比例函数$y = \frac{m}{x}(x\gt0)$的图象恰好经过$DC$的中点$E$,求直线$AE$的函数解析式;
(3)在(2)的条件下,若直线$AE$与$x$轴交于点$M$,与$y$轴交于点$N$,问线段$AN$与线段$ME$的大小关系如何?请说明理由.

(1)求$m$的值;
(2)线段$AB$为边向右作矩形$ABCD$,反比例函数$y = \frac{m}{x}(x\gt0)$的图象恰好经过$DC$的中点$E$,求直线$AE$的函数解析式;
(3)在(2)的条件下,若直线$AE$与$x$轴交于点$M$,与$y$轴交于点$N$,问线段$AN$与线段$ME$的大小关系如何?请说明理由.
答案:
解:
(1)$\because B(2,0),\therefore OB = 2$,$\because \tan\angle AOB=\frac{AB}{OB}=\frac{3}{2},\therefore AB = 3,\therefore A(2,3)$,$\because$反比例函数$y=\frac{m}{x}(x > 0)$的图象经过线段$OA$的端点$A$,$\therefore m = 2×3 = 6$;
(2)$\because A(2,3),B(2,0)$,$\therefore$线段$AB$的中点纵坐标为$\frac{3}{2}$,$\because$四边形$ABCD$为矩形,$\therefore AB = CD$,$\therefore$线段$CD$的中点$E$的纵坐标为$\frac{3}{2}$,由
(1)可知反比例函数解析式为$y=\frac{6}{x}$,当$y=\frac{3}{2}$时,可得$\frac{3}{2}=\frac{6}{x}$,解得$x = 4,\therefore E(4,\frac{3}{2})$,设直线$AE$的函数解析式为$y = kx + b$,把$A,E$坐标代入可得$\begin{cases}2k + b = 3\\4k + b=\frac{3}{2}\end{cases}$,解得$\begin{cases}k = -\frac{3}{4}\\b=\frac{9}{2}\end{cases}$,$\therefore$直线$AE$的函数解析式为$y = -\frac{3}{4}x+\frac{9}{2}$;
(3)相等.理由如下:连接$OE$,延长$DA$交$y$轴于点$F$,

则$AF\perp ON$,且$AF = 2$,对于$y = -\frac{3}{4}x+\frac{9}{2}$,当$y = 0$时,$x = 6$,当$x = 0$时,$y=\frac{9}{2}$,$\therefore M(6,0),N(0,\frac{9}{2}),\therefore OM = 6,ON=\frac{9}{2}$,$\because S_{\triangle EOM}=\frac{1}{2}\cdot OM\cdot EC=\frac{1}{2}×6×\frac{3}{2}=\frac{9}{2}$,$S_{\triangle AON}=\frac{1}{2}ON\cdot AF=\frac{1}{2}×\frac{9}{2}×2=\frac{9}{2}$,$\therefore S_{\triangle EOM}=S_{\triangle AON}$,$\because$在$\triangle MON$中,$AN$和$ME$边上的高相等,$\therefore AN = ME$.
解:
(1)$\because B(2,0),\therefore OB = 2$,$\because \tan\angle AOB=\frac{AB}{OB}=\frac{3}{2},\therefore AB = 3,\therefore A(2,3)$,$\because$反比例函数$y=\frac{m}{x}(x > 0)$的图象经过线段$OA$的端点$A$,$\therefore m = 2×3 = 6$;
(2)$\because A(2,3),B(2,0)$,$\therefore$线段$AB$的中点纵坐标为$\frac{3}{2}$,$\because$四边形$ABCD$为矩形,$\therefore AB = CD$,$\therefore$线段$CD$的中点$E$的纵坐标为$\frac{3}{2}$,由
(1)可知反比例函数解析式为$y=\frac{6}{x}$,当$y=\frac{3}{2}$时,可得$\frac{3}{2}=\frac{6}{x}$,解得$x = 4,\therefore E(4,\frac{3}{2})$,设直线$AE$的函数解析式为$y = kx + b$,把$A,E$坐标代入可得$\begin{cases}2k + b = 3\\4k + b=\frac{3}{2}\end{cases}$,解得$\begin{cases}k = -\frac{3}{4}\\b=\frac{9}{2}\end{cases}$,$\therefore$直线$AE$的函数解析式为$y = -\frac{3}{4}x+\frac{9}{2}$;
(3)相等.理由如下:连接$OE$,延长$DA$交$y$轴于点$F$,
则$AF\perp ON$,且$AF = 2$,对于$y = -\frac{3}{4}x+\frac{9}{2}$,当$y = 0$时,$x = 6$,当$x = 0$时,$y=\frac{9}{2}$,$\therefore M(6,0),N(0,\frac{9}{2}),\therefore OM = 6,ON=\frac{9}{2}$,$\because S_{\triangle EOM}=\frac{1}{2}\cdot OM\cdot EC=\frac{1}{2}×6×\frac{3}{2}=\frac{9}{2}$,$S_{\triangle AON}=\frac{1}{2}ON\cdot AF=\frac{1}{2}×\frac{9}{2}×2=\frac{9}{2}$,$\therefore S_{\triangle EOM}=S_{\triangle AON}$,$\because$在$\triangle MON$中,$AN$和$ME$边上的高相等,$\therefore AN = ME$.
27. (10分)如图,在矩形$ABCD$中,$E$为$CD$的中点,$F$为$BE$上的一点,连接$CF$并延长交$AB$于点$M$,$MN\perp CM$交射线$AD$于点$N$.
(1)当$F$为$BE$中点时,求证:$AM = CE$;
(2)若$\frac{AB}{BC}=\frac{EF}{BF}=2$,求$\frac{AN}{ND}$的值;
(3)若$\frac{AB}{BC}=\frac{EF}{BF}=n$,当$n$为何值时,$MN// BE$?

(1)当$F$为$BE$中点时,求证:$AM = CE$;
(2)若$\frac{AB}{BC}=\frac{EF}{BF}=2$,求$\frac{AN}{ND}$的值;
(3)若$\frac{AB}{BC}=\frac{EF}{BF}=n$,当$n$为何值时,$MN// BE$?
答案:
(1)证明:当$F$为$BE$中点时,则有$BF = EF$. $\because$四边形$ABCD$是矩形,$\therefore AB = DC,AB// DC$,$\therefore \angle MBF=\angle CEF,\angle BMF=\angle ECF$. 在$\triangle BMF$和$\triangle ECF$中,$\begin{cases}\angle MBF=\angle CEF\\\angle BMF=\angle ECF\\BF = EF\end{cases}$,$\therefore \triangle BMF\cong\triangle ECF(AAS),\therefore BM = EC$. $\because E$为$CD$的中点,$\therefore EC=\frac{1}{2}DC,\therefore BM = EC=\frac{1}{2}DC=\frac{1}{2}AB$,$\therefore AM = BM = EC$;
(2)解:设$MB = a$,$\because$四边形$ABCD$是矩形,$\therefore AD = BC,AB = DC,\angle A=\angle ABC=\angle BCD = 90^{\circ},AB// DC$,$\therefore \triangle ECF\sim\triangle BMF,\therefore \frac{EC}{BM}=\frac{EF}{BF}=2,\therefore EC = 2a$,$\therefore AB = CD = 2CE = 4a,AM = AB - MB = 3a$. $\because \frac{AB}{BC}=2,\therefore BC = AD = 2a$. $\because MN\perp MC,\therefore \angle CMN = 90^{\circ}$,$\therefore \angle AMN+\angle BMC = 90^{\circ}$. $\because \angle A = 90^{\circ},\therefore \angle ANM+\angle AMN = 90^{\circ}$,$\therefore \angle BMC=\angle ANM$,$\therefore \triangle AMN\sim\triangle BCM$,$\therefore \frac{AN}{BM}=\frac{AM}{BC},\therefore \frac{AN}{a}=\frac{3a}{2a}$,$\therefore AN=\frac{3}{2}a,ND = AD - AN = 2a-\frac{3}{2}a=\frac{1}{2}a,\therefore \frac{AN}{ND}=3$;
(3)解:当$\frac{AB}{BC}=\frac{EF}{BF}=n$时,设$MB = a$. $\because AB// CD,\therefore \triangle MFB\sim\triangle CFE$,$\therefore \frac{MB}{EC}=\frac{BF}{EF}=\frac{1}{n}$,即$\frac{a}{EC}=\frac{1}{n}$,解得$EC = an.\therefore AB = 2an$. 又$\because \frac{AB}{BC}=n,\therefore \frac{2an}{BC}=n,\therefore BC = 2a$. $\because MN// BE,MN\perp MC$,$\therefore \angle EFC=\angle NMC = 90^{\circ},\therefore \angle FCB+\angle FBC = 90^{\circ}$. $\because \angle MBC = 90^{\circ},\therefore \angle BMC+\angle FCB = 90^{\circ}$,$\therefore \angle BMC=\angle FBC$. $\because \angle MBC=\angle BCE = 90^{\circ},\therefore \triangle MBC\sim\triangle BCE$,$\therefore \frac{MB}{BC}=\frac{BC}{CE},\therefore \frac{a}{2a}=\frac{2a}{na},\therefore n = 4$.
(1)证明:当$F$为$BE$中点时,则有$BF = EF$. $\because$四边形$ABCD$是矩形,$\therefore AB = DC,AB// DC$,$\therefore \angle MBF=\angle CEF,\angle BMF=\angle ECF$. 在$\triangle BMF$和$\triangle ECF$中,$\begin{cases}\angle MBF=\angle CEF\\\angle BMF=\angle ECF\\BF = EF\end{cases}$,$\therefore \triangle BMF\cong\triangle ECF(AAS),\therefore BM = EC$. $\because E$为$CD$的中点,$\therefore EC=\frac{1}{2}DC,\therefore BM = EC=\frac{1}{2}DC=\frac{1}{2}AB$,$\therefore AM = BM = EC$;
(2)解:设$MB = a$,$\because$四边形$ABCD$是矩形,$\therefore AD = BC,AB = DC,\angle A=\angle ABC=\angle BCD = 90^{\circ},AB// DC$,$\therefore \triangle ECF\sim\triangle BMF,\therefore \frac{EC}{BM}=\frac{EF}{BF}=2,\therefore EC = 2a$,$\therefore AB = CD = 2CE = 4a,AM = AB - MB = 3a$. $\because \frac{AB}{BC}=2,\therefore BC = AD = 2a$. $\because MN\perp MC,\therefore \angle CMN = 90^{\circ}$,$\therefore \angle AMN+\angle BMC = 90^{\circ}$. $\because \angle A = 90^{\circ},\therefore \angle ANM+\angle AMN = 90^{\circ}$,$\therefore \angle BMC=\angle ANM$,$\therefore \triangle AMN\sim\triangle BCM$,$\therefore \frac{AN}{BM}=\frac{AM}{BC},\therefore \frac{AN}{a}=\frac{3a}{2a}$,$\therefore AN=\frac{3}{2}a,ND = AD - AN = 2a-\frac{3}{2}a=\frac{1}{2}a,\therefore \frac{AN}{ND}=3$;
(3)解:当$\frac{AB}{BC}=\frac{EF}{BF}=n$时,设$MB = a$. $\because AB// CD,\therefore \triangle MFB\sim\triangle CFE$,$\therefore \frac{MB}{EC}=\frac{BF}{EF}=\frac{1}{n}$,即$\frac{a}{EC}=\frac{1}{n}$,解得$EC = an.\therefore AB = 2an$. 又$\because \frac{AB}{BC}=n,\therefore \frac{2an}{BC}=n,\therefore BC = 2a$. $\because MN// BE,MN\perp MC$,$\therefore \angle EFC=\angle NMC = 90^{\circ},\therefore \angle FCB+\angle FBC = 90^{\circ}$. $\because \angle MBC = 90^{\circ},\therefore \angle BMC+\angle FCB = 90^{\circ}$,$\therefore \angle BMC=\angle FBC$. $\because \angle MBC=\angle BCE = 90^{\circ},\therefore \triangle MBC\sim\triangle BCE$,$\therefore \frac{MB}{BC}=\frac{BC}{CE},\therefore \frac{a}{2a}=\frac{2a}{na},\therefore n = 4$.
查看更多完整答案,请扫码查看