2025年全练单元卷九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
25. (10分)如图,在△ABC中,点D,E分别在边BC,AC上,AD与BE相交于点O,且AB = AD,$AE^{2}=OE\cdot BE$.
(1)求证:①∠EAD = ∠ABE;②BE = EC;
(2)若BD:CD = 4:3,CE = 8,求线段AE的长.

(1)求证:①∠EAD = ∠ABE;②BE = EC;
(2)若BD:CD = 4:3,CE = 8,求线段AE的长.
答案:
(1)①证明:
∵ $AE^2 = OE\cdot BE$,
∴ $\frac{OE}{AE}=\frac{AE}{BE}$,
∵ $\angle AEO = \angle BEA$,
∴ $\triangle AEO\sim\triangle BEA$,
∴ $\angle EAD = \angle ABE$;
②证明:
∵ $AB = AD$,
∴ $\angle ABD = \angle ADB$,
∵ $\angle ABD = \angle ABE + \angle CBE$,$\angle ADB = \angle EAD + \angle C$,
由①知:$\angle EAD = \angle ABE$,
∴ $\angle CBE = \angle C$,
∴ $BE = EC$;
(2)解:过点$A$作$AF\perp BD$于点$F$,交$BE$于点$G$,连接$GD$,如图,
∵ $AB = AD$,$AF\perp BD$,
∴ $BF = FD$,即$AF$为$BD$的垂直平分线,
∴ $GB = GD$,
∴ $\angle GBC = \angle GDF$,
由
(1)②知:$\angle CBE = \angle C$,
∴ $\angle GDB = \angle C$,
∴ $GD// EC$,
∴ $\triangle BGD\sim\triangle BEC$,
∴ $\frac{GD}{EC}=\frac{BD}{BC}$,
∵ $BD:CD = 4:3$,
∴ $\frac{BD}{BC}=\frac{4}{7}$,
∴ $\frac{GD}{8}=\frac{4}{7}$,
∴ $GD = \frac{32}{7}$,
∵ $BD:CD = 4:3$,$BF = FD$,
∴ $FD:DC = 2:3$,
∴ $\frac{FD}{FC}=\frac{2}{5}$,
∵ $GD// EC$,$\triangle FGD\sim\triangle FAC$,
∴ $\frac{GD}{AC}=\frac{FD}{FC}$,$\frac{\frac{32}{7}}{AC}=\frac{2}{5}$,
∴ $AC = \frac{80}{7}$,
∴ $AE = AC - EC = \frac{80}{7}-8 = \frac{24}{7}$.
(1)①证明:
∵ $AE^2 = OE\cdot BE$,
∴ $\frac{OE}{AE}=\frac{AE}{BE}$,
∵ $\angle AEO = \angle BEA$,
∴ $\triangle AEO\sim\triangle BEA$,
∴ $\angle EAD = \angle ABE$;
②证明:
∵ $AB = AD$,
∴ $\angle ABD = \angle ADB$,
∵ $\angle ABD = \angle ABE + \angle CBE$,$\angle ADB = \angle EAD + \angle C$,
由①知:$\angle EAD = \angle ABE$,
∴ $\angle CBE = \angle C$,
∴ $BE = EC$;
(2)解:过点$A$作$AF\perp BD$于点$F$,交$BE$于点$G$,连接$GD$,如图,
∵ $AB = AD$,$AF\perp BD$,
∴ $BF = FD$,即$AF$为$BD$的垂直平分线,
∴ $GB = GD$,
∴ $\angle GBC = \angle GDF$,
由
(1)②知:$\angle CBE = \angle C$,
∴ $\angle GDB = \angle C$,
∴ $GD// EC$,
∴ $\triangle BGD\sim\triangle BEC$,
∴ $\frac{GD}{EC}=\frac{BD}{BC}$,
∵ $BD:CD = 4:3$,
∴ $\frac{BD}{BC}=\frac{4}{7}$,
∴ $\frac{GD}{8}=\frac{4}{7}$,
∴ $GD = \frac{32}{7}$,
∵ $BD:CD = 4:3$,$BF = FD$,
∴ $FD:DC = 2:3$,
∴ $\frac{FD}{FC}=\frac{2}{5}$,
∵ $GD// EC$,$\triangle FGD\sim\triangle FAC$,
∴ $\frac{GD}{AC}=\frac{FD}{FC}$,$\frac{\frac{32}{7}}{AC}=\frac{2}{5}$,
∴ $AC = \frac{80}{7}$,
∴ $AE = AC - EC = \frac{80}{7}-8 = \frac{24}{7}$.
查看更多完整答案,请扫码查看