2025年全练单元卷九年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全练单元卷九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
26. (10分)如图,$\triangle ABC$中,$\angle ABC=90^{\circ}$,$F$是$AC$的中点,过$AC$上一点$D$作$DE// AB$,交$BF$的延长线于点$E$,$AG\perp BE$,垂足是$G$,连接$BD$,$AE$.
(1)求证:$\triangle ABC\sim\triangle BGA$;
(2)若$AF = 5$,$AB = 8$,求$FG$的长;
(3)当$AB = BC$,$\angle DBC = 30^{\circ}$时,求$\frac{DE}{BD}$的值.

(1)求证:$\triangle ABC\sim\triangle BGA$;
(2)若$AF = 5$,$AB = 8$,求$FG$的长;
(3)当$AB = BC$,$\angle DBC = 30^{\circ}$时,求$\frac{DE}{BD}$的值.
答案:
(1)证明:$\because \angle ABC = 90^{\circ}$,$F$是$AC$的中点,
$\therefore BF=\frac{1}{2}AC = AF$,
$\therefore \angle FAB = \angle FBA$,
$\because AG\perp BE$,
$\therefore \angle AGB = 90^{\circ}$,
$\therefore \angle ABC = \angle AGB$,
$\therefore \triangle ABC\sim\triangle BGA$;
(2)解:$\because AF = 5$,
$\therefore AC = 2AF = 10$,$BF = 5$,
$\because \triangle ABC\sim\triangle BGA$,
$\therefore \frac{AB}{BG}=\frac{AC}{BA}$,$\therefore BG=\frac{AB^{2}}{AC}=\frac{8^{2}}{10}=\frac{32}{5}$,
$\therefore FG = BG - BF=\frac{32}{5}-5=\frac{7}{5}$;
(3)解:延长$ED$交$BC$于$H$,
则$DH\perp BC$,
$\therefore \angle DHC = 90^{\circ}$,
$\because AB = BC$,$F$为$AC$的中点,
$\therefore \angle C = 45^{\circ}$,$\angle CBF = 45^{\circ}$,
$\therefore \triangle DHC$,$\triangle BEH$是等腰直角三角形,
$\therefore DH = HC$,$EH = BH$,
设$DH = HC = a$,
$\because \angle DBC = 30^{\circ}$,
$\therefore BD = 2a$,$\therefore BH = \sqrt{3}a$,
$\therefore EH = \sqrt{3}a$,
$\therefore DE = (\sqrt{3}-1)a$,
$\therefore \frac{DE}{BD}=\frac{(\sqrt{3}-1)a}{2a}=\frac{\sqrt{3}-1}{2}$.

(1)证明:$\because \angle ABC = 90^{\circ}$,$F$是$AC$的中点,
$\therefore BF=\frac{1}{2}AC = AF$,
$\therefore \angle FAB = \angle FBA$,
$\because AG\perp BE$,
$\therefore \angle AGB = 90^{\circ}$,
$\therefore \angle ABC = \angle AGB$,
$\therefore \triangle ABC\sim\triangle BGA$;
(2)解:$\because AF = 5$,
$\therefore AC = 2AF = 10$,$BF = 5$,
$\because \triangle ABC\sim\triangle BGA$,
$\therefore \frac{AB}{BG}=\frac{AC}{BA}$,$\therefore BG=\frac{AB^{2}}{AC}=\frac{8^{2}}{10}=\frac{32}{5}$,
$\therefore FG = BG - BF=\frac{32}{5}-5=\frac{7}{5}$;
(3)解:延长$ED$交$BC$于$H$,
则$DH\perp BC$,
$\therefore \angle DHC = 90^{\circ}$,
$\because AB = BC$,$F$为$AC$的中点,
$\therefore \angle C = 45^{\circ}$,$\angle CBF = 45^{\circ}$,
$\therefore \triangle DHC$,$\triangle BEH$是等腰直角三角形,
$\therefore DH = HC$,$EH = BH$,
设$DH = HC = a$,
$\because \angle DBC = 30^{\circ}$,
$\therefore BD = 2a$,$\therefore BH = \sqrt{3}a$,
$\therefore EH = \sqrt{3}a$,
$\therefore DE = (\sqrt{3}-1)a$,
$\therefore \frac{DE}{BD}=\frac{(\sqrt{3}-1)a}{2a}=\frac{\sqrt{3}-1}{2}$.
查看更多完整答案,请扫码查看