例3 如图27−1−21,已知⊙O的直径AC=10,弦AB=6,D是弧BC的中点,OD交BC于点E,OD//AB,则DE的长为 ( )

A. 1
B. 2
C. 3
D. 4
A. 1
B. 2
C. 3
D. 4
答案:
B
例4 如图27−1−22是著名水乡乌镇的一圆拱桥示意图,拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,求拱桥的半径.
答案:
5m
1. 如图27 - 1 - 23,$\odot O$的弦$AB = 8$,$M$是$AB$的中点,且$OM = 3$,则$\odot O$的半径等于( )
A.$\sqrt{7}$ B. 4 C. 5 D. 6
A.$\sqrt{7}$ B. 4 C. 5 D. 6
答案:
C
2. 如图27 - 1 - 24,已知$\odot O$的直径$CD = 8$,$AB$是$\odot O$的弦,$AB\perp CD$,垂足为$M$,$OM = 2$,则$AB$的长为( )
A. 2 B. $2\sqrt{3}$ C. 4 D. $4\sqrt{3}$
A. 2 B. $2\sqrt{3}$ C. 4 D. $4\sqrt{3}$
答案:
D
3. 石拱桥是中国传统桥梁四大基本形式之一,它的主桥拱是圆弧形. 如图27 - 1 - 25,已知某公园石拱桥的跨度$AB = 16$米,拱高$CD = 4$米,那么桥拱所在圆的半径$OA =$_______米.
答案:
10
4. 如图27 - 1 - 26,在$\triangle OAB$中,$OA = OB$,$\odot O$交$AB$于点$C$,$D$. 求证:$AC = BD$.
答案:
证明:如图,过点O作$OE\perp AB$于点E.
$\because$在$\odot O$中,$OE\perp CD$,
$\therefore CE = DE$.
$\because OA = OB$,$OE\perp AB$,$\therefore AE = BE$,
$\therefore AE - CE = BE - DE$,即$AC = BD$.
证明:如图,过点O作$OE\perp AB$于点E.
$\because$在$\odot O$中,$OE\perp CD$,
$\therefore CE = DE$.
$\because OA = OB$,$OE\perp AB$,$\therefore AE = BE$,
$\therefore AE - CE = BE - DE$,即$AC = BD$.
查看更多完整答案,请扫码查看