例8 函数y=x²+bx+c与y=x的图象如图26 - T - 4所示,则不等式x²+(b - 1)x+c<0的解集为__________。
答案:
$1\lt x\lt3$
例9 若关于x的函数y=(m² - 1)x²-(2m + 2)x+2的图象与x轴只有一个交点,求m的值。
答案:
解:当$\begin{cases}m^{2}-1 = 0\\-(2m + 2)\neq0\end{cases}$,即$m = 1$时,该函数为一次函数$y = -4x + 2$,它的图象与$x$轴只有一个交点;
当$\begin{cases}m^{2}-1 = 0\\-(2m + 2)=0\end{cases}$时,$m = -1$,此时该函数为$y = 2$,不合题意,舍去;
当$m^{2}-1\neq0$,即$m\neq\pm1$时,该函数为二次函数,由题意得$[-(2m + 2)]^{2}-4\times2(m^{2}-1)=0$,解得$m_{1}=-1$(不合题意,舍去),$m_{2}=3$,因此$m = 3$.
综上可得,$m$的值为1或3.
当$\begin{cases}m^{2}-1 = 0\\-(2m + 2)=0\end{cases}$时,$m = -1$,此时该函数为$y = 2$,不合题意,舍去;
当$m^{2}-1\neq0$,即$m\neq\pm1$时,该函数为二次函数,由题意得$[-(2m + 2)]^{2}-4\times2(m^{2}-1)=0$,解得$m_{1}=-1$(不合题意,舍去),$m_{2}=3$,因此$m = 3$.
综上可得,$m$的值为1或3.
例10(2023重庆)如图26 - T - 5,在平面直角坐标系中,抛物线y=1/4x²+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,-3)。
(1)求该抛物线的表达式;
(2)P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;
(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点。写出所有使得△QEF是以QF为腰的等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来。
(1)求该抛物线的表达式;
(2)P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;
(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点。写出所有使得△QEF是以QF为腰的等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来。
答案:
解:(1)将点$B(3,0),C(0,-3)$分别代入$y=\frac{1}{4}x^{2}+bx + c$,得$\begin{cases}\frac{1}{4}\times3^{2}+3b + c = 0\\c = -3\end{cases}$
解得$\begin{cases}b=\frac{1}{4}\\c = -3\end{cases}$
$\therefore$该抛物线的表达式为$y=\frac{1}{4}x^{2}+\frac{1}{4}x - 3$.
(2)$\because$抛物线$y=\frac{1}{4}x^{2}+\frac{1}{4}x - 3$与$x$轴交于点$A,B$,当$y = 0$时,$\frac{1}{4}x^{2}+\frac{1}{4}x - 3 = 0$,
解得$x_{1}=-4,x_{2}=3$,$\therefore A(-4,0)$.
$\because C(0,-3)$.
$\therefore$可设直线$AC$的表达式为$y = kx - 3$,
$\therefore -4k - 3 = 0$,解得$k = -\frac{3}{4}$,
$\therefore$直线$AC$的表达式为$y = -\frac{3}{4}x - 3$.
如图所示,过点$P$作$PE\perp x$轴于点$E$,交$AC$于点$H$.
设$P(t,\frac{1}{4}t^{2}+\frac{1}{4}t - 3)(-4\lt t\lt0)$,
则$H(t,-\frac{3}{4}t - 3)$,$\therefore PH = -\frac{3}{4}t - 3 - (\frac{1}{4}t^{2}+\frac{1}{4}t - 3)=-\frac{1}{4}t^{2}-t$,
$\because\angle AHE=\angle PHD,\angle AEH=\angle HDP = 90^{\circ}$,
$\therefore\angle OAC=\angle HPD$.
$\because OA = 4,OC = 3$,$\therefore AC = 5$,
$\therefore\cos\angle HPD=\frac{PD}{PH}=\cos\angle OAC=\frac{AO}{AC}=\frac{4}{5}$,
$\therefore PD=\frac{4}{5}PH=\frac{4}{5}(-\frac{1}{4}t^{2}-t)=-\frac{1}{5}t^{2}-\frac{4}{5}t=-\frac{1}{5}(t + 2)^{2}+\frac{4}{5}$.
$\because -\frac{1}{5}\lt0$,$\therefore$当$t = -2$时,$PD$取得最大值,为$\frac{4}{5}$,此时,$\frac{1}{4}t^{2}+\frac{1}{4}t - 3=\frac{1}{4}\times(-2)^{2}+\frac{1}{4}\times(-2)-3=-\frac{5}{2}$,$\therefore P(-2,-\frac{5}{2})$.

(3)点$Q$的坐标为$(\frac{9}{2},-1)$或$(\frac{9}{2},5)$或$(\frac{9}{2},\frac{7}{4})$. $\because$抛物线$y=\frac{1}{4}x^{2}+\frac{1}{4}x - 3=\frac{1}{4}(x+\frac{1}{2})^{2}-\frac{49}{16}$,$\therefore$将该抛物线向右平移5个单位后,得到抛物线$y=\frac{1}{4}(x-\frac{9}{2})^{2}-\frac{49}{16}$,其对称轴为直线$x=\frac{9}{2}$.
$\because$点$P(-2,-\frac{5}{2})$向右平移5个单位得到点$E$,$\therefore E(3,-\frac{5}{2})$.
$\because$平移后的抛物线与$y$轴交于点$F$,令$x = 0$,则$y=\frac{1}{4}\times(0 - \frac{9}{2})^{2}-\frac{49}{16}=2$,$\therefore F(0,2)$,
$\because Q$为平移后的抛物线的对称轴上任意一点,
$\therefore$点$Q$的横坐标为$\frac{9}{2}$,$\therefore$设$Q(\frac{9}{2},m)$,
$\therefore QE^{2}=(\frac{9}{2}-3)^{2}+(m+\frac{5}{2})^{2},QF^{2}=(\frac{9}{2}-0)^{2}+(m - 2)^{2},EF^{2}=3^{2}+(2+\frac{5}{2})^{2}=\frac{117}{4}$.
由题意知需分以下两种情况:
①当$QF = EF$时,$(\frac{9}{2}-0)^{2}+(m - 2)^{2}=\frac{117}{4}$,解得$m = -1$或$m = 5$,$\therefore Q(\frac{9}{2},-1)$或$Q(\frac{9}{2},5)$;
②当$QE = QF$时,$(\frac{9}{2}-3)^{2}+(m+\frac{5}{2})^{2}=(\frac{9}{2}-0)^{2}+(m - 2)^{2}$,
解得$m=\frac{7}{4}$,$\therefore Q(\frac{9}{2},\frac{7}{4})$.
综上所述,点$Q$的坐标为$(\frac{9}{2},-1)$或$(\frac{9}{2},5)$或$(\frac{9}{2},\frac{7}{4})$.(写出其中一个点$Q$的坐标求解过程即可)
解:(1)将点$B(3,0),C(0,-3)$分别代入$y=\frac{1}{4}x^{2}+bx + c$,得$\begin{cases}\frac{1}{4}\times3^{2}+3b + c = 0\\c = -3\end{cases}$
解得$\begin{cases}b=\frac{1}{4}\\c = -3\end{cases}$
$\therefore$该抛物线的表达式为$y=\frac{1}{4}x^{2}+\frac{1}{4}x - 3$.
(2)$\because$抛物线$y=\frac{1}{4}x^{2}+\frac{1}{4}x - 3$与$x$轴交于点$A,B$,当$y = 0$时,$\frac{1}{4}x^{2}+\frac{1}{4}x - 3 = 0$,
解得$x_{1}=-4,x_{2}=3$,$\therefore A(-4,0)$.
$\because C(0,-3)$.
$\therefore$可设直线$AC$的表达式为$y = kx - 3$,
$\therefore -4k - 3 = 0$,解得$k = -\frac{3}{4}$,
$\therefore$直线$AC$的表达式为$y = -\frac{3}{4}x - 3$.
如图所示,过点$P$作$PE\perp x$轴于点$E$,交$AC$于点$H$.
设$P(t,\frac{1}{4}t^{2}+\frac{1}{4}t - 3)(-4\lt t\lt0)$,
则$H(t,-\frac{3}{4}t - 3)$,$\therefore PH = -\frac{3}{4}t - 3 - (\frac{1}{4}t^{2}+\frac{1}{4}t - 3)=-\frac{1}{4}t^{2}-t$,
$\because\angle AHE=\angle PHD,\angle AEH=\angle HDP = 90^{\circ}$,
$\therefore\angle OAC=\angle HPD$.
$\because OA = 4,OC = 3$,$\therefore AC = 5$,
$\therefore\cos\angle HPD=\frac{PD}{PH}=\cos\angle OAC=\frac{AO}{AC}=\frac{4}{5}$,
$\therefore PD=\frac{4}{5}PH=\frac{4}{5}(-\frac{1}{4}t^{2}-t)=-\frac{1}{5}t^{2}-\frac{4}{5}t=-\frac{1}{5}(t + 2)^{2}+\frac{4}{5}$.
$\because -\frac{1}{5}\lt0$,$\therefore$当$t = -2$时,$PD$取得最大值,为$\frac{4}{5}$,此时,$\frac{1}{4}t^{2}+\frac{1}{4}t - 3=\frac{1}{4}\times(-2)^{2}+\frac{1}{4}\times(-2)-3=-\frac{5}{2}$,$\therefore P(-2,-\frac{5}{2})$.
(3)点$Q$的坐标为$(\frac{9}{2},-1)$或$(\frac{9}{2},5)$或$(\frac{9}{2},\frac{7}{4})$. $\because$抛物线$y=\frac{1}{4}x^{2}+\frac{1}{4}x - 3=\frac{1}{4}(x+\frac{1}{2})^{2}-\frac{49}{16}$,$\therefore$将该抛物线向右平移5个单位后,得到抛物线$y=\frac{1}{4}(x-\frac{9}{2})^{2}-\frac{49}{16}$,其对称轴为直线$x=\frac{9}{2}$.
$\because$点$P(-2,-\frac{5}{2})$向右平移5个单位得到点$E$,$\therefore E(3,-\frac{5}{2})$.
$\because$平移后的抛物线与$y$轴交于点$F$,令$x = 0$,则$y=\frac{1}{4}\times(0 - \frac{9}{2})^{2}-\frac{49}{16}=2$,$\therefore F(0,2)$,
$\because Q$为平移后的抛物线的对称轴上任意一点,
$\therefore$点$Q$的横坐标为$\frac{9}{2}$,$\therefore$设$Q(\frac{9}{2},m)$,
$\therefore QE^{2}=(\frac{9}{2}-3)^{2}+(m+\frac{5}{2})^{2},QF^{2}=(\frac{9}{2}-0)^{2}+(m - 2)^{2},EF^{2}=3^{2}+(2+\frac{5}{2})^{2}=\frac{117}{4}$.
由题意知需分以下两种情况:
①当$QF = EF$时,$(\frac{9}{2}-0)^{2}+(m - 2)^{2}=\frac{117}{4}$,解得$m = -1$或$m = 5$,$\therefore Q(\frac{9}{2},-1)$或$Q(\frac{9}{2},5)$;
②当$QE = QF$时,$(\frac{9}{2}-3)^{2}+(m+\frac{5}{2})^{2}=(\frac{9}{2}-0)^{2}+(m - 2)^{2}$,
解得$m=\frac{7}{4}$,$\therefore Q(\frac{9}{2},\frac{7}{4})$.
综上所述,点$Q$的坐标为$(\frac{9}{2},-1)$或$(\frac{9}{2},5)$或$(\frac{9}{2},\frac{7}{4})$.(写出其中一个点$Q$的坐标求解过程即可)
查看更多完整答案,请扫码查看