2026年非常学案高中数学选择性必修第一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年非常学案高中数学选择性必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第135页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
[典例讲评] 2. 已知 $\tan \alpha = 3$,求下列各式的值:
(1) $\frac{4 \sin \alpha - \cos \alpha}{3 \sin \alpha + 5 \cos \alpha}$;
(2) $\frac{\sin^2 \alpha - 2 \sin \alpha · \cos \alpha - \cos^2 \alpha}{4 \cos^2 \alpha - 3 \sin^2 \alpha}$;
(3) $\frac{3}{4} \sin^2 \alpha + \frac{1}{2} \cos^2 \alpha$.
(1) $\frac{4 \sin \alpha - \cos \alpha}{3 \sin \alpha + 5 \cos \alpha}$;
(2) $\frac{\sin^2 \alpha - 2 \sin \alpha · \cos \alpha - \cos^2 \alpha}{4 \cos^2 \alpha - 3 \sin^2 \alpha}$;
(3) $\frac{3}{4} \sin^2 \alpha + \frac{1}{2} \cos^2 \alpha$.
答案:
典例讲评2.解:
(1)原式$=\frac{4\tan\alpha-1}{3\tan\alpha+5}=\frac{4×3-1}{3×3+5}=\frac{11}{14}$.
(2)原式$=\frac{\tan^2\alpha-2\tan\alpha-1}{4-3\tan^2\alpha}=\frac{9-2×3-1}{4-3×9}=-\frac{2}{23}$.
(3)原式$=\frac{3 - \frac{4}{5}\sin^2\alpha+\frac{1}{2}\cos^2\alpha}{\sin^2\alpha+\cos^2\alpha}$
$=\frac{\frac{3}{4}\tan^2\alpha+\frac{1}{2}}{\tan^2\alpha+1}=\frac{\frac{3}{4}×9+\frac{1}{2}}{9+1}=\frac{29}{40}$.
(1)原式$=\frac{4\tan\alpha-1}{3\tan\alpha+5}=\frac{4×3-1}{3×3+5}=\frac{11}{14}$.
(2)原式$=\frac{\tan^2\alpha-2\tan\alpha-1}{4-3\tan^2\alpha}=\frac{9-2×3-1}{4-3×9}=-\frac{2}{23}$.
(3)原式$=\frac{3 - \frac{4}{5}\sin^2\alpha+\frac{1}{2}\cos^2\alpha}{\sin^2\alpha+\cos^2\alpha}$
$=\frac{\frac{3}{4}\tan^2\alpha+\frac{1}{2}}{\tan^2\alpha+1}=\frac{\frac{3}{4}×9+\frac{1}{2}}{9+1}=\frac{29}{40}$.
[典例讲评] 3. 已知 $\sin \alpha + \cos \alpha = -\frac{1}{3}, 0 < \alpha < \pi$.
(1) 求 $\sin \alpha \cos \alpha$ 的值;
(2) 求 $\sin \alpha - \cos \alpha$ 的值.
(1) 求 $\sin \alpha \cos \alpha$ 的值;
(2) 求 $\sin \alpha - \cos \alpha$ 的值.
答案:
典例讲评3.解:
(1)由$\sin\alpha+\cos\alpha=-\frac{1}{3}$,得$(\sin\alpha+\cos\alpha)^2=\frac{1}{9}$,即$\sin^2\alpha+2\sin\alpha\cos\alpha+\cos^2\alpha=\frac{1}{9}$,
所以$\sin\alpha\cos\alpha=-\frac{4}{9}$.
(2)因为$0<\alpha<\pi$,
所以$\sin\alpha>0,\cos\alpha<0$,所以$\sin\alpha-\cos\alpha>0$.
所以$\sin\alpha-\cos\alpha=\sqrt{(\sin\alpha-\cos\alpha)^2}$
$=\sqrt{1-2\sin\alpha\cos\alpha}=\frac{\sqrt{17}}{3}$.
(1)由$\sin\alpha+\cos\alpha=-\frac{1}{3}$,得$(\sin\alpha+\cos\alpha)^2=\frac{1}{9}$,即$\sin^2\alpha+2\sin\alpha\cos\alpha+\cos^2\alpha=\frac{1}{9}$,
所以$\sin\alpha\cos\alpha=-\frac{4}{9}$.
(2)因为$0<\alpha<\pi$,
所以$\sin\alpha>0,\cos\alpha<0$,所以$\sin\alpha-\cos\alpha>0$.
所以$\sin\alpha-\cos\alpha=\sqrt{(\sin\alpha-\cos\alpha)^2}$
$=\sqrt{1-2\sin\alpha\cos\alpha}=\frac{\sqrt{17}}{3}$.
2. (1) 已知 $\alpha \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right], \sin \alpha + \cos \alpha = -\frac{1}{5}$,则 $\tan \alpha = \underline{\hspace{2cm}}$
A.$-\frac{4}{3}$
B.$-\frac{3}{4}$
C.$\frac{3}{4}$
D.$\frac{4}{3}$
A.$-\frac{4}{3}$
B.$-\frac{3}{4}$
C.$\frac{3}{4}$
D.$\frac{4}{3}$
答案:
学以致用 2.
(1)A
(2)$\frac{1}{3}$或$-\frac{11}{3}$ $\left[(1)\right.$由题意,$\alpha\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$,
$\sin\alpha+\cos\alpha=-\frac{1}{5}$,$\therefore\cos\alpha>0,\sin\alpha<0$,
$(\sin\alpha+\cos\alpha)^2=\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cos\alpha=1+2\sin\alpha\cos\alpha=\frac{1}{25}$,
解得$2\sin\alpha\cos\alpha=-\frac{24}{25}$,
$\therefore\sin\alpha-\cos\alpha=-\sqrt{\sin^2\alpha+\cos^2\alpha-2\sin\alpha\cos\alpha}$
$=-\sqrt{1-\left(-\frac{24}{25}\right)}=-\frac{7}{5}$,
$\therefore\begin{cases}\sin\alpha=-\frac{4}{5},\\\cos\alpha=\frac{3}{5},\end{cases}$
$\therefore\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=-\frac{4}{3}$,故选A.
(2)由题中等式易知$\cos\alpha\neq0$,
则$2\cos^2\alpha-3\sin\alpha\cos\alpha=\frac{2\cos^2\alpha-3\sin\alpha\cos\alpha}{\sin^2\alpha+\cos^2\alpha}=\frac{2-3\tan\alpha}{\tan^2\alpha+1}=\frac{9}{10}$,
整理得$9\tan^2\alpha+30\tan\alpha-11=0$,
即$(3\tan\alpha-1)(3\tan\alpha+11)=0$,
解得$\tan\alpha=\frac{1}{3}$或$\tan\alpha=-\frac{11}{3}$.]
(1)A
(2)$\frac{1}{3}$或$-\frac{11}{3}$ $\left[(1)\right.$由题意,$\alpha\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$,
$\sin\alpha+\cos\alpha=-\frac{1}{5}$,$\therefore\cos\alpha>0,\sin\alpha<0$,
$(\sin\alpha+\cos\alpha)^2=\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cos\alpha=1+2\sin\alpha\cos\alpha=\frac{1}{25}$,
解得$2\sin\alpha\cos\alpha=-\frac{24}{25}$,
$\therefore\sin\alpha-\cos\alpha=-\sqrt{\sin^2\alpha+\cos^2\alpha-2\sin\alpha\cos\alpha}$
$=-\sqrt{1-\left(-\frac{24}{25}\right)}=-\frac{7}{5}$,
$\therefore\begin{cases}\sin\alpha=-\frac{4}{5},\\\cos\alpha=\frac{3}{5},\end{cases}$
$\therefore\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=-\frac{4}{3}$,故选A.
(2)由题中等式易知$\cos\alpha\neq0$,
则$2\cos^2\alpha-3\sin\alpha\cos\alpha=\frac{2\cos^2\alpha-3\sin\alpha\cos\alpha}{\sin^2\alpha+\cos^2\alpha}=\frac{2-3\tan\alpha}{\tan^2\alpha+1}=\frac{9}{10}$,
整理得$9\tan^2\alpha+30\tan\alpha-11=0$,
即$(3\tan\alpha-1)(3\tan\alpha+11)=0$,
解得$\tan\alpha=\frac{1}{3}$或$\tan\alpha=-\frac{11}{3}$.]
(2) 已知 $2 \cos^2 \alpha - 3 \sin \alpha \cos \alpha = \frac{9}{10}$,则 $\tan \alpha = \underline{\hspace{3cm}}$.
$\frac{1}{3}$或$-\frac{11}{3}$
答案:
(2)$\frac{1}{3}$或$-\frac{11}{3}$
(2)$\frac{1}{3}$或$-\frac{11}{3}$
4. (1) 化简 $\frac{2 \sin^2 \alpha - 1}{1 - 2 \cos^2 \alpha}$.
(2) 求证:$\frac{\sin \alpha - \cos \alpha + 1}{\sin \alpha + \cos \alpha - 1} =$$\frac{1 + \sin \alpha}{\cos \alpha}$.
(2) 求证:$\frac{\sin \alpha - \cos \alpha + 1}{\sin \alpha + \cos \alpha - 1} =$$\frac{1 + \sin \alpha}{\cos \alpha}$.
答案:
典例讲评 4.
(1)1 [原式$=\frac{2\sin^2\alpha-1}{1-2(1-\sin^2\alpha)}=\frac{2\sin^2\alpha-1}{2\sin^2\alpha-1}=1$.]
(2)证明:法一:左边$=\frac{(\sin\alpha-\cos\alpha+1)(\sin\alpha+\cos\alpha+1)}{(\sin\alpha+\cos\alpha-1)(\sin\alpha+\cos\alpha+1)}=\frac{(\sin\alpha+1)^2-\cos^2\alpha}{(\sin\alpha+\cos\alpha)^2-1}$
$=\frac{\sin^2\alpha+2\sin\alpha+1-\cos^2\alpha}{2\sin\alpha\cos\alpha}=\frac{2\sin^2\alpha+2\sin\alpha}{2\sin\alpha\cos\alpha}=\frac{\sin\alpha+1}{\cos\alpha}=$右边.
所以原等式成立.
法二:因为$(\sin\alpha-\cos\alpha+1)\cos\alpha$
$=\sin\alpha\cos\alpha-\cos^2\alpha+\cos\alpha$
$=\sin\alpha\cos\alpha+\cos\alpha-(1-\sin^2\alpha)$
$=\cos\alpha(\sin\alpha+1)-(1+\sin\alpha)(1-\sin\alpha)$
$=(1+\sin\alpha)(\sin\alpha+\cos\alpha-1)$,
且$\sin\alpha+\cos\alpha-1\neq0,\cos\alpha\neq0$,
所以$\frac{\sin\alpha-\cos\alpha+1}{\sin\alpha+\cos\alpha-1}=\frac{1+\sin\alpha}{\cos\alpha}$.
(1)1 [原式$=\frac{2\sin^2\alpha-1}{1-2(1-\sin^2\alpha)}=\frac{2\sin^2\alpha-1}{2\sin^2\alpha-1}=1$.]
(2)证明:法一:左边$=\frac{(\sin\alpha-\cos\alpha+1)(\sin\alpha+\cos\alpha+1)}{(\sin\alpha+\cos\alpha-1)(\sin\alpha+\cos\alpha+1)}=\frac{(\sin\alpha+1)^2-\cos^2\alpha}{(\sin\alpha+\cos\alpha)^2-1}$
$=\frac{\sin^2\alpha+2\sin\alpha+1-\cos^2\alpha}{2\sin\alpha\cos\alpha}=\frac{2\sin^2\alpha+2\sin\alpha}{2\sin\alpha\cos\alpha}=\frac{\sin\alpha+1}{\cos\alpha}=$右边.
所以原等式成立.
法二:因为$(\sin\alpha-\cos\alpha+1)\cos\alpha$
$=\sin\alpha\cos\alpha-\cos^2\alpha+\cos\alpha$
$=\sin\alpha\cos\alpha+\cos\alpha-(1-\sin^2\alpha)$
$=\cos\alpha(\sin\alpha+1)-(1+\sin\alpha)(1-\sin\alpha)$
$=(1+\sin\alpha)(\sin\alpha+\cos\alpha-1)$,
且$\sin\alpha+\cos\alpha-1\neq0,\cos\alpha\neq0$,
所以$\frac{\sin\alpha-\cos\alpha+1}{\sin\alpha+\cos\alpha-1}=\frac{1+\sin\alpha}{\cos\alpha}$.
查看更多完整答案,请扫码查看