2025年金考卷中考45套汇编数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金考卷中考45套汇编数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年金考卷中考45套汇编数学》

17. 如图,点$A,B,C$在$\odot O$上,$\angle ACB = 35°$,以$BA,BC$为边作$□ ABCD$.
(1) 当$BC$经过圆心$O$时[如图(1)],求$\angle D$的度数;
(2) 当$AD$与$\odot O$相切时[如图(2)],若$\odot O$的半径为 6,求$\overset{\frown}{AC}$的长.
答案:
17
(1)$\because BC$经过圆心$O$,$\therefore\angle BAC = 90°$.
$\because\angle ACB = 35°$,$\therefore\angle B = 55°$.
$\because$四边形$ABCD$是平行四边形,
$\therefore\angle D=\angle B = 55°$.
(2)方法一:如图,连接$OA$,$OC$.
$\because AD$与$\odot O$相切,$\therefore OA\perp AD$.
$\because$四边形$ABCD$是平行四边形,
$\therefore BC// AD$,$\therefore\angle CAD=\angle ACB$.
$\because\angle ACB = 35°$,$\therefore\angle CAD=\angle ACB = 35°$.
$\because OA\perp AD$,$\therefore\angle OAC = 55°$,
$\because OA = OC$,$\therefore\angle OCA = 55°$,
$\therefore\angle AOC = 70°$,$\therefore l_{\stackrel\frown{AC}}=\frac{70×\pi×6}{180}=\frac{7\pi}{3}$.
见切线连半径得垂直
巧作辅助线:见切线,连半径,得垂直
方法二:如图,连接$OA$,$OC$.
$\because AD$与$\odot O$相切,$\therefore OA\perp AD$.
$\because$四边形$ABCD$是平行四边形,
$\therefore BC// AD$,$\therefore OA\perp BC$,
$\therefore AB = AC$,$\therefore\angle B=\angle ACB$.
$\because\angle ACB = 35°$,$\therefore\angle B=\angle ACB = 35°$,
$\therefore\angle AOC = 2\angle B = 70°$,
$\therefore l_{\stackrel\frown{AC}}=\frac{70×\pi×6}{180}=\frac{7\pi}{3}$.
18. 如图,直线$l:y = \frac{2}{3}x + m$与反比例函数$y = \frac{k}{x}(k \neq 0)$的图象交于点$A(6,2)$.
(1) 求一次函数和反比例函数的解析式;
(2) 将直线$l$向上平移,在$x$轴上方与反比例函数图象交于点$C$,连接$OA,OC$,当$\angle 1 = \angle 2$时,求点$C$的坐标及直线$l$平移的距离.
答案:
18
(1)$\because$直线$l:y=\frac{2}{3}x + m$与反比例函数$y=\frac{k}{x}$的图象交于点$A(6,2)$,
$\therefore\frac{2}{3}×6 + m = 2$,$\frac{k}{6}=2$,
$\therefore m = - 2,k = 12$,
$\therefore$一次函数和反比例函数的解析式分别为$y=\frac{2}{3}x - 2,y=\frac{12}{x}$.
(2)方法一:如图,作$AD\perp x$轴于点$D$,$CE\perp y$轴于点$E$,
$\therefore\angle ADO=\angle CEO = 90°$.
又$\because\angle1=\angle2$,$\therefore\triangle AOD\sim\triangle COE$,
$\therefore\frac{AD}{CE}=\frac{OD}{OE}$
$\because A(6,2)$,$\therefore AD = 2,OD = 6$,
$\therefore\frac{2}{CE}=\frac{6}{OE}$,$\therefore OE = 3CE$.
设$CE = a$,$\therefore OE = 3a$,$\therefore C(a,3a)$.
$\because$点$C$在反比例函数$y=\frac{12}{x}$的图象上,
$\therefore a×3a = 12$,
解得$a = 2$或$a = - 2$(舍去),
$\therefore C(2,6)$.
设直线$l$平移后的解析式为$y=\frac{2}{3}x + n$,
$\therefore\frac{2}{3}×2 + n = 6$,$\therefore n=\frac{14}{3}$,
$\therefore$直线$l$向上平移的距离为$n - m=\frac{14}{3}-(-2)=\frac{20}{3}$.

方法二:如图,作$AD\perp x$轴于点$D$,$CE\perp y$轴于点$E$.
$\because\angle1=\angle2$,$\therefore\tan\angle1=\tan\angle2$,
$\therefore\frac{AD}{OD}=\frac{CE}{OE}$
$\because A(6,2)$,$\therefore\frac{AD}{OD}=\frac{2}{6}=\frac{1}{3}$,
$\therefore\frac{CE}{OE}=\frac{1}{3}$,$\therefore OE = 3CE$.
(此后同方法一)
方法三:如图,作$AD\perp x$轴于点$D$,$CE\perp y$轴于点$E$,
$\therefore\angle ADO=\angle CEO = 90°$.
又$\because\angle1=\angle2$,$\therefore\triangle AOD\sim\triangle COE$.
根据反比例函数图象性质可知:$S_{\triangle COE}=S_{\triangle AOD}$,
$\therefore\triangle AOD$与$\triangle COE$的相似比为$1$,
$\therefore\triangle AOD\cong\triangle COE$,
$\therefore OD = OE$,$AD = CE$.
$\because A(6,2)$,$\therefore C(2,6)$.
(此后同方法一)
方法四:(此前同方法一)
$\therefore C(2,6)$.
在直线$l$上,当$x = 2$时,$y=\frac{2}{3}×2 - 2=-\frac{2}{3}$,
$\therefore$直线$l$向上平移的距离为$6-(-\frac{2}{3})=\frac{20}{3}$.
19.   图(1)是一种靠墙玻璃淋浴房,其俯视示意图如图(2)所示,$AE$与$DE$两处是墙,$AB$与$CD$两处是固定的玻璃隔板,$BC$处是门框,测得$AB = BC = CD = 60\ cm,\angle ABC = \angle BCD = 135°,MN$处是一扇推拉门,推动推拉门时,两端点$M,N$分别在$BC,CD$对应的轨道上滑动. 当点$N$与点$C$重合时,推拉门与门框完全闭合;当点$N$滑动到限位点$P$处时,推拉门推至最大,此时测得$\angle CNM = 6°$.
(1) 在推拉门从闭合到推至最大的过程中,
① $\angle CMN$的最小值为
0
度,最大值为
39
度;
② $\triangle CMN$面积的变化情况是 (
C
)
A. 越来越大
B. 越来越小
C. 先增大后减小
(2) 当$\angle CMN = 30°$时,求$\triangle CMN$的面积.
答案:
19
(1)①$0$ $39$
②$C$
(2)如图,过点$N$作$NH\perp BC$交$BC$的延长线于点$H$.
巧作辅助线135图可巧作垂直建直角BMC
巧作辅助线:$135°$,图可巧,作垂直,建直角
依题意可知:$MN = BC = 60 cm$.
$\because\angle CMN = 30°$,
$\therefore NH=\frac{1}{2}MN = 30 cm$,$MH = MN·\cos30°=\frac{\sqrt{3}}{2}MN = 30\sqrt{3} cm$.
$\because\angle BCD = 135°$,$\therefore\angle NCH=\angle CNH = 45°$,
$\therefore CH = NH = 30 cm$,$\therefore MC = (30\sqrt{3}-30) cm$,
$\therefore S_{\triangle CMN}=\frac{1}{2}×(30\sqrt{3}-30)×30=(450\sqrt{3}-450) cm^2$.
答:当$\angle CMN = 30°$时,$\triangle CMN$的面积为$(450\sqrt{3}-450) cm^2$.

查看更多完整答案,请扫码查看

关闭