2025年金考卷中考45套汇编数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金考卷中考45套汇编数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第48页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
23. (本题13分)综合与探究
问题情境:如图(1),在$\triangle ABC$纸片中,$AB > BC$,点D在边AB上,$AD > BD$。沿过点D的直线折叠该纸片,使DB的对应线段$DB'$与BC平行,且折痕与边BC交于点E,得到$\triangle DB'E$,然后展平。
猜想证明:
(1)判断四边形$BDB'E$的形状,并说明理由。
拓展延伸:
(2)如图(2),继续沿过点D的直线折叠该纸片,使点A的对应点$A'$落在射线$DB'$上,且折痕与边AC交于点F,然后展平。连接$A'E$交边AC于点G,连接$A'F$。
①若$AD = 2BD$,判断DE与$A'E$的位置关系,并说明理由;
②若$\angle C = 90^{\circ}$,$AB = 15$,$BC = 9$,当$\triangle A'FG$是以$A'F$为腰的等腰三角形时,请直接写出$A'F$的长。

问题情境:如图(1),在$\triangle ABC$纸片中,$AB > BC$,点D在边AB上,$AD > BD$。沿过点D的直线折叠该纸片,使DB的对应线段$DB'$与BC平行,且折痕与边BC交于点E,得到$\triangle DB'E$,然后展平。
猜想证明:
(1)判断四边形$BDB'E$的形状,并说明理由。
拓展延伸:
(2)如图(2),继续沿过点D的直线折叠该纸片,使点A的对应点$A'$落在射线$DB'$上,且折痕与边AC交于点F,然后展平。连接$A'E$交边AC于点G,连接$A'F$。
①若$AD = 2BD$,判断DE与$A'E$的位置关系,并说明理由;
②若$\angle C = 90^{\circ}$,$AB = 15$,$BC = 9$,当$\triangle A'FG$是以$A'F$为腰的等腰三角形时,请直接写出$A'F$的长。
答案:
23
(1)四边形$BDB'E$是菱形。
理由如下:由折叠可知,$B'D = BD$,$B'E = BE$,
$\angle B'DE = \angle BDE$。(2分)
$\because DB' // BC$,$\therefore \angle B'DE = \angle BED$,(3分)
$\therefore \angle BDE = \angle BED$,$\therefore BD = BE$,(4分)
$\therefore B'D = BD = BE = B'E$,$\therefore$四边形$BDB'E$是菱形。(5分)
(2)①$DE \perp A'E$。
理由如下:
如图
(1),由
(1)得$B'D = BD = B'E$。$\because B'D = B'E$,$\therefore \angle 1 = \angle 2$。
$\because B'D = B'E$,$\therefore \angle 1 = \angle 2$。
由折叠可知,$A'D = AD$。$\because AD = 2BD$,$\therefore A'D = 2B'D$,
$\therefore$点$B'$是$A'D$的中点,$\therefore B'D = B'A'$,
$\therefore B'A' = B'E$,$\therefore \angle 3 = \angle 4$。
在$\triangle A'DE$中,$\because \angle 1 + \angle A'ED + \angle 4 = 180^{\circ}$,
$\therefore \angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$,$\therefore \angle 2 + \angle 3 = 90^{\circ}$,(9分)
即$\angle DEA' = 90^{\circ}$,$\therefore DE \perp A'E$。(10分)
②$5$或$\frac{165}{37}$。(评分说明:只写出一个正确答案得$2$分,全部正确得$3$分)
解法提示:$\because \angle C = 90^{\circ}$,$AB = 15$,$BC = 9$,$\therefore AC = \sqrt{AB^{2} - BC^{2}} = 12$,
$\therefore \tan A = \frac{3}{4}$,$\sin A = \frac{3}{5}$,$\cos A = \frac{4}{5}$。
设$AC$与$DA'$交于点$M$,$\because DB' // BC$,$\therefore \angle AMD = \angle C = 90^{\circ}$。
由折叠可知$A'F = AF$,$\angle FA'D = \angle A$,$\therefore \tan \angle FA'M = \frac{3}{4}$,
$\therefore$可设$FM = 3m$,$MA' = 4m$,则$A'F = 5m$,
$\therefore AM = AF + FM = 8m$,$\therefore AD = \frac{AM}{\cos A} = 10m$,
$\therefore BD = AB - AD = 15 - 10m$。
在菱形$BDB'E$中,$BE = BD = 15 - 10m$,$\therefore EC = BC - BE = 9 - (15 - 10m) = 10m - 6$。
$\because DB' // BE$,$\therefore \triangle A'MG \sim \triangle ECG$(点拨:“8”字型相似),$\therefore \frac{A'M}{EC} = \frac{MG}{CG}$
$\triangle A'FG$是以$A'F$为腰的等腰三角形,可分$A'F = GF$和$A'F = A'G$两种情况讨论。
a. 当$A'F = GF$时,如图
(2),$MG = GF - FM = A'F - FM = 2m$,$\therefore \frac{4m}{10m - 6} = \frac{2m}{12 - 10m}$,$\therefore m = 1$,$\therefore A'F = 5m = 5$。
b. 当$A'F = A'G$时,如图
(3),$A'M \perp FG$,则$GM = FM = 3m$,
$CG = AC - AM - MG = 12 - 11m$。
此时$\frac{4m}{10m - 6} = \frac{3m}{12 - 11m}$,$\therefore m = \frac{33}{37}$,$\therefore A'F = 5m = \frac{165}{37}$。
综上,$A'F$的长为$5$或$\frac{165}{37}$。
23
(1)四边形$BDB'E$是菱形。
理由如下:由折叠可知,$B'D = BD$,$B'E = BE$,
$\angle B'DE = \angle BDE$。(2分)
$\because DB' // BC$,$\therefore \angle B'DE = \angle BED$,(3分)
$\therefore \angle BDE = \angle BED$,$\therefore BD = BE$,(4分)
$\therefore B'D = BD = BE = B'E$,$\therefore$四边形$BDB'E$是菱形。(5分)
(2)①$DE \perp A'E$。
理由如下:
如图
(1),由
(1)得$B'D = BD = B'E$。$\because B'D = B'E$,$\therefore \angle 1 = \angle 2$。
$\because B'D = B'E$,$\therefore \angle 1 = \angle 2$。
由折叠可知,$A'D = AD$。$\because AD = 2BD$,$\therefore A'D = 2B'D$,
$\therefore$点$B'$是$A'D$的中点,$\therefore B'D = B'A'$,
$\therefore B'A' = B'E$,$\therefore \angle 3 = \angle 4$。
在$\triangle A'DE$中,$\because \angle 1 + \angle A'ED + \angle 4 = 180^{\circ}$,
$\therefore \angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$,$\therefore \angle 2 + \angle 3 = 90^{\circ}$,(9分)
即$\angle DEA' = 90^{\circ}$,$\therefore DE \perp A'E$。(10分)
②$5$或$\frac{165}{37}$。(评分说明:只写出一个正确答案得$2$分,全部正确得$3$分)
解法提示:$\because \angle C = 90^{\circ}$,$AB = 15$,$BC = 9$,$\therefore AC = \sqrt{AB^{2} - BC^{2}} = 12$,
$\therefore \tan A = \frac{3}{4}$,$\sin A = \frac{3}{5}$,$\cos A = \frac{4}{5}$。
设$AC$与$DA'$交于点$M$,$\because DB' // BC$,$\therefore \angle AMD = \angle C = 90^{\circ}$。
由折叠可知$A'F = AF$,$\angle FA'D = \angle A$,$\therefore \tan \angle FA'M = \frac{3}{4}$,
$\therefore$可设$FM = 3m$,$MA' = 4m$,则$A'F = 5m$,
$\therefore AM = AF + FM = 8m$,$\therefore AD = \frac{AM}{\cos A} = 10m$,
$\therefore BD = AB - AD = 15 - 10m$。
在菱形$BDB'E$中,$BE = BD = 15 - 10m$,$\therefore EC = BC - BE = 9 - (15 - 10m) = 10m - 6$。
$\because DB' // BE$,$\therefore \triangle A'MG \sim \triangle ECG$(点拨:“8”字型相似),$\therefore \frac{A'M}{EC} = \frac{MG}{CG}$
$\triangle A'FG$是以$A'F$为腰的等腰三角形,可分$A'F = GF$和$A'F = A'G$两种情况讨论。
a. 当$A'F = GF$时,如图
(2),$MG = GF - FM = A'F - FM = 2m$,$\therefore \frac{4m}{10m - 6} = \frac{2m}{12 - 10m}$,$\therefore m = 1$,$\therefore A'F = 5m = 5$。
b. 当$A'F = A'G$时,如图
(3),$A'M \perp FG$,则$GM = FM = 3m$,
$CG = AC - AM - MG = 12 - 11m$。
此时$\frac{4m}{10m - 6} = \frac{3m}{12 - 11m}$,$\therefore m = \frac{33}{37}$,$\therefore A'F = 5m = \frac{165}{37}$。
综上,$A'F$的长为$5$或$\frac{165}{37}$。
查看更多完整答案,请扫码查看