2025年金考卷中考45套汇编数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金考卷中考45套汇编数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第121页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
1. $-2$ 的相反数是(
A.$-2$
B.$-\frac{1}{2}$
C.$\frac{1}{2}$
D.$2$
D
)A.$-2$
B.$-\frac{1}{2}$
C.$\frac{1}{2}$
D.$2$
答案:
1 D
2. 新课标 跨学科试题 下列四种化学仪器的示意图中,是轴对称图形的是(

C
)
答案:
2 C
3. 计算:$\frac{x}{x - 2y}-\frac{2y}{x - 2y}=$(
A.$1$
B.$x - 2y$
C.$\frac{1}{x - 2y}$
D.$\frac{x - 2y}{-4y}$
A
)A.$1$
B.$x - 2y$
C.$\frac{1}{x - 2y}$
D.$\frac{x - 2y}{-4y}$
答案:
3 A
4. 如图,$AB// CD$,$\angle 1 = 50^{\circ}$,则$\angle 2$的度数是(

A.$40^{\circ}$
B.$50^{\circ}$
C.$60^{\circ}$
D.$70^{\circ}$
B
)A.$40^{\circ}$
B.$50^{\circ}$
C.$60^{\circ}$
D.$70^{\circ}$
答案:
4 B
5. 在平面直角坐标系中,一次函数 $y = x + 1$ 的图象是(

D
)
答案:
5 D 对于一次函数$y = x + 1$,$k = 1 > 0$,$y$随$x$的增大而增大,$b = 1 > 0$,
∴一次函数$y = x + 1$的图象过第一、二、三象限。故选D。
名师敲重点 知识积累 正比例函数$y = kx(k ≠ 0)$和一次函数$y = kx + b(k ≠ 0)$的

$k>0$ $k<0$
正比例函数
图象(过原点的直线)
位置 图象经过第一、三象限 图象经过第二、四象限
性质 $y$随$x$的增大而增大 $y$随$x$的增大而减小
一次函数
图象(过点$(0,b)$,$(- \frac{b}{k},0)$的直线)
位置 图象经过第一、二、三象限 图象经过第一、三、四象限 图象经过第一、二、四象限 图象经过第二、三、四象限
性质 $y$随$x$的增大而增大 $y$随$x$的增大而减小
拓展①直线$y = k_1x + b_1$与直线$y = k_2x + b_2$平行$\Leftrightarrow k_1 = k_2 ≠ 0$,且$b_1 ≠ b_2$;
②直线$y = k_1x + b_1$与直线$y = k_2x + b_2$垂直$\Leftrightarrow k_1 · k_2 = -1$。
5 D 对于一次函数$y = x + 1$,$k = 1 > 0$,$y$随$x$的增大而增大,$b = 1 > 0$,
∴一次函数$y = x + 1$的图象过第一、二、三象限。故选D。
名师敲重点 知识积累 正比例函数$y = kx(k ≠ 0)$和一次函数$y = kx + b(k ≠ 0)$的
$k>0$ $k<0$
正比例函数
图象(过原点的直线)
位置 图象经过第一、三象限 图象经过第二、四象限
性质 $y$随$x$的增大而增大 $y$随$x$的增大而减小
一次函数
图象(过点$(0,b)$,$(- \frac{b}{k},0)$的直线)
位置 图象经过第一、二、三象限 图象经过第一、三、四象限 图象经过第一、二、四象限 图象经过第二、三、四象限
性质 $y$随$x$的增大而增大 $y$随$x$的增大而减小
拓展①直线$y = k_1x + b_1$与直线$y = k_2x + b_2$平行$\Leftrightarrow k_1 = k_2 ≠ 0$,且$b_1 ≠ b_2$;
②直线$y = k_1x + b_1$与直线$y = k_2x + b_2$垂直$\Leftrightarrow k_1 · k_2 = -1$。
6. 若关于 $x$ 的一元二次方程 $x^{2}-2x + a = 0$ 无实数根,则实数 $a$ 的取值范围是(
A.$a < 1$
B.$a > 1$
C.$a\leqslant 1$
D.$a\geqslant 1$
B
)A.$a < 1$
B.$a > 1$
C.$a\leqslant 1$
D.$a\geqslant 1$
答案:
6B 若关于$x$的一元二次方程$x^2 - 2x + a = 0$无实数根,则$\Delta = (-2)^2 - 4a = 4 - 4a < 0$,
∴$a > 1$。故选B。
∴$a > 1$。故选B。
7. 如图,小明在数学综合实践活动中,利用一面墙(墙足够长)和 $24m$ 长的围栏围成一个面积为 $40m^{2}$ 的矩形场地. 设矩形的宽为 $x m$,根据题意可列方程(

A.$x(24 - 2x)=40$
B.$x(24 - x)=40$
C.$2x(24 - 2x)=40$
D.$2x(24 - x)=40$
A
)A.$x(24 - 2x)=40$
B.$x(24 - x)=40$
C.$2x(24 - 2x)=40$
D.$2x(24 - x)=40$
答案:
7A 由题意知,矩形的宽为$x$m,则长为$(24 - 2x)$m,根据题意可列方程$x(24 - 2x) = 40$。故选A。
查看更多完整答案,请扫码查看