2025年名校课堂七年级数学上册人教版贵州专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂七年级数学上册人教版贵州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂七年级数学上册人教版贵州专版》

1. 若$A = x^{2}-xy$,$B = xy + y^{2}$,则$A + B = $(
A
)
A.$x^{2}+y^{2}$
B.$2xy$
C.$-2xy$
D.$x^{2}-y^{2}$
答案: A
2. 化简$-(a - 1)-(-a - 2)$的结果为(
A
)
A.$3$
B.$1$
C.$-2a + 1$
D.$-3$
答案: A
3. 计算$6a^{2}-5a + 3与5a^{2}+2a - 1$的差,结果正确的是(
D
)
A.$a^{2}-3a + 4$
B.$a^{2}-3a + 2$
C.$a^{2}-7a + 2$
D.$a^{2}-7a + 4$
答案: D
4. 下面是小芳做的一道运算题:$(-x^{2}+5xy-\frac{1}{2}y^{2})-(-\frac{1}{2}x^{2}+4xy-\frac{3}{2}y^{2})= -\frac{1}{2}x^{2}$ $+y^{2}$. 但她不小心把一滴墨水滴在了上面,阴影部分即为被墨水弄污的部分,那么被墨水遮住的一项应是(
A
)
A.$+xy$
B.$-xy$
C.$+9xy$
D.$-7xy$
答案: A
5. (2024·德阳)若一个多项式加上$y^{2}+3xy - 4$,结果是$3xy + 2y^{2}-5$,则这个多项式为
y² - 1
.
答案: y² - 1
6. 计算:
(1) $(x^{2}-2x)-2(x^{2}-3x + 1)+2$.
(2) $3(2ab^{2}-4a + b)-2(3ab^{2}-2a)+b$.
答案: 解:
(1)原式$=x^{2}-2x - 2x^{2}+6x - 2 + 2=-x^{2}+4x$.
(2)原式$=6ab^{2}-12a + 3b - 6ab^{2}+4a + b=-8a + 4b$.
7. 先化简,再求值:$3a + 2(a-\frac{1}{2}b^{2})-(a - 2b^{2})$,其中$a = 2$,$b = -1$.
答案: 解:原式$=3a + 2(a-\frac{1}{2}b^{2})-(a - 2b^{2})=3a + 2a - b^{2}-a + 2b^{2}=4a + b^{2}$. 当$a = 2$,$b=-1$时,原式$=4×2+(-1)^{2}=8 + 1=9$.
8. 我校七年级有象棋、足球、演讲、美术共四个社团,参加象棋社团的有$x$人,参加足球社团的人数比参加象棋社团的人数的$2倍少y$人,参加演讲社团的人数比参加足球社团人数的一半多$1$人. 每个学生都限报一项,参加社团的学生共有$(6x - 3y)$人.
(1) 参加足球社团的学生有
$(2x - y)$
人,参加演讲社团的学生有______
$(x-\frac{1}{2}y + 1)$
人(用含$x$,$y$的代数式表示).
(2) 若$x = 64$,$y = 40$,求参加美术社团的人数.
答案:
(1)$(2x - y)$;$(x-\frac{1}{2}y + 1)$
(2)
∵参加社团的学生共有$(6x - 3y)$人,
∴参加美术社团的人数为$6x - 3y - x-(2x - y)-(x-\frac{1}{2}y + 1)=6x - 3y - x - 2x + y - x+\frac{1}{2}y - 1=2x-\frac{3}{2}y - 1$. 当$x = 64$,$y = 40$时,$2x-\frac{3}{2}y - 1=2×64-\frac{3}{2}×40 - 1=67$. 答:参加美术社团的学生有 67 人.
9. 已知$A = 3a^{2}b - ab^{2}$,$B = ab^{2}+3a^{2}b$,化简:$5A - B$.
答案: 解:$5A - B=5(3a^{2}b - ab^{2})-(ab^{2}+3a^{2}b)=15a^{2}b - 5ab^{2}-ab^{2}-3a^{2}b=12a^{2}b - 6ab^{2}$.

查看更多完整答案,请扫码查看

关闭