第48页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
1. 下面是小明在作业本上记录的计算题,请补充完整.
(1) 计算:$2× (-6)^{2}-8× (-\frac{1}{2})^{3}$.
解:原式=
=
=
(2) 计算:$(-1)^{2}-[10-(1 - 5)× 2]$.
解:原式=
=
=
(1) 计算:$2× (-6)^{2}-8× (-\frac{1}{2})^{3}$.
解:原式=
$2×36-8×(-\frac {1}{8})$
(先算乘方
)=
$72+1$
(再算乘法
)=
73
(最后算加减).(2) 计算:$(-1)^{2}-[10-(1 - 5)× 2]$.
解:原式=
$1-[10-(-4)×2]$
(先算小括号
里面的)=
$1-18$
(再算中括号
里面的)=
-17
(最后算加减).
答案:
1.
(1)$2×36-8×(-\frac {1}{8})$ 乘方 $72+1$ 乘法 73
(2)$1-[10-(-4)×2]$ 小括号 $1-18$ 中括号 -17
(1)$2×36-8×(-\frac {1}{8})$ 乘方 $72+1$ 乘法 73
(2)$1-[10-(-4)×2]$ 小括号 $1-18$ 中括号 -17
2. 计算:$(-4)^{2}+4^{2}=$(
A.$0$
B.$8$
C.$16$
D.$32$
D
)A.$0$
B.$8$
C.$16$
D.$32$
答案:
2.D
3. 下列式子中,运算结果最小的是(
A.$(-3)× (-2)$
B.$(-3)^{2}÷ (-2)^{2}$
C.$(-3)^{2}× (-2)$
D.$-(-3 - 2)^{2}$
D
)A.$(-3)× (-2)$
B.$(-3)^{2}÷ (-2)^{2}$
C.$(-3)^{2}× (-2)$
D.$-(-3 - 2)^{2}$
答案:
3.D
4. 计算:$12 - 7× (-4)+8÷ (-2)^{2}= $(
A.$-24$
B.$-20$
C.$6$
D.$42$
D
)A.$-24$
B.$-20$
C.$6$
D.$42$
答案:
4.D
5. 计算:
(1) $(-1)^{3}× 3-(1 - 3)÷ 4$.
(2) $(-1 + 2)× 3+2^{2}÷ (-4)$.
(3) $-7^{2}+2× (-3)^{2}+(-6)÷ (-\frac{1}{3})^{2}$.
(4) $(-2)^{2}+[18-(-3)× 2]÷ 4$.
(1) $(-1)^{3}× 3-(1 - 3)÷ 4$.
(2) $(-1 + 2)× 3+2^{2}÷ (-4)$.
(3) $-7^{2}+2× (-3)^{2}+(-6)÷ (-\frac{1}{3})^{2}$.
(4) $(-2)^{2}+[18-(-3)× 2]÷ 4$.
答案:
5.解:
(1)原式$=-1×3-(-2)×\frac {1}{4}=-3+\frac {1}{2}=-2\frac {1}{2}$.
(2)原式$=1×3+4÷(-4)=3-1=2$.
(3)原式$=-49+2×9+(-6)÷\frac {1}{9}=-49+18+(-6)×9=-49+18+(-54)=-85$.
(4)原式$=4+(18+6)×\frac {1}{4}=4+6=10.$
(1)原式$=-1×3-(-2)×\frac {1}{4}=-3+\frac {1}{2}=-2\frac {1}{2}$.
(2)原式$=1×3+4÷(-4)=3-1=2$.
(3)原式$=-49+2×9+(-6)÷\frac {1}{9}=-49+18+(-6)×9=-49+18+(-54)=-85$.
(4)原式$=4+(18+6)×\frac {1}{4}=4+6=10.$
6. 新考向 开放性问题(2024·贵州改编)在①$2^{2}$;②$\vert - 2\vert$;③$(-1)^{2026}$;④$\frac{1}{2}× 2$中任选3个式子求和.
答案:
6.解:答案不唯一,如选取①②③这3个式子进行求和,得$2^{2}+|-2|+(-1)^{2026}=4+2+1=7.$
7. 新考向 推理能力观察下列数据,按规律在横线上填上适当的数:$1,-\frac{3}{4},\frac{5}{9},-\frac{7}{16},\frac{9}{25},\underline{
$-\frac {11}{36}$
}$.
答案:
7.$-\frac {11}{36}$
8. 已知$2^{1}= 2$,$2^{2}= 4$,$2^{3}= 8$,$2^{4}的个位上的数是6$,$2^{5}的个位上的数是2$,$2^{6}的个位上的数是4……则2^{2025}的个位上的数是\underline{
2
}$.
答案:
8.2
查看更多完整答案,请扫码查看