2025年学习之友八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习之友八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年学习之友八年级数学上册人教版》

1. 在$\triangle ABC与\triangle DEF$中,$AB = DF$,$AC = DE$,$CB = EF$则(
B
)
A.$\triangle ABC\cong\triangle DEF$
B.$\triangle ABC\cong\triangle DFE$
C.$\triangle ABC\cong\triangle EDF$
D.$\triangle ABC\cong\triangle EFD$
答案: B
2. 在$\triangle ABC与\triangle DEF$中,$AB = 2$,$BC = 3$,$CA = 4$,$DE = 4$,$EF = 3$,要使$\triangle ABC与\triangle DEF$全等,则$DF$等于(
A
)
A.$2$
B.$3$
C.$4$
D.$6$
答案: A
3. 如图,若$AB = AC$,$DB = DC$,根据
SSS
,可得$\triangle ABD\cong\triangle ACD$。
答案: SSS
4. 如图,在$\triangle ABC和\triangle FDE$中,$AD = FC$,$AB = EF$,当添加条件
BC=DE
时,可用“SSS”判定$\triangle ABC\cong\triangle FED$。
答案: BC=DE
5. 如图,$AB = ED$,$AC = EC$,$C是BD$边的中点,若$\angle A = 36^{\circ}$,则$\angle E = $
36°

答案: 36°
6. 如图,正方形网格中,每一格表示$1$个单位长度,在所给网格中确定一点$D$(不与点$C$重合),使得$\triangle DAB与\triangle ABC$全等,则点$D$的坐标是
(1,0)、(0,1)、(-1,-2)

答案: (1,0)、(0,1)、(-1,-2)
7. 如图,$OA = OB$,$OC = OD$,$AD = CB$。
求证:$\angle D = \angle C$。
答案: 证明:在△AOD 和△BOC 中,OA=OB,OC=OD,AD=CB,
∴△AOD≌△BOC(SSS),
∴∠D=∠C.
8. 如图所示,$C为AB$的中点,$AD = CE$,$CD = BE$,$\angle B = 58^{\circ}$,$\angle E = 72^{\circ}$,求$\angle DCE$的度数。
答案: 解:
∵C 是 AB 中点,
∴AC=BC.在△ADC 和△CEB 中,AD=CE,DC=BE,AC=BC,
∴△ADC≌△CEB(SSS),
∴∠ACD=∠B=58°.
∵∠B=58°,∠E=72°,
∴∠BCE=50°,
∴∠DCE=72°.
1. 工人师傅常用角尺平分一个任意角,作法如图所示:$\angle AOB$是一个任意角,在边$OA$,$OB上分别取OM = ON$,移动角尺,使得角尺两边相同的刻度分别与$M$,$N$重合,过角尺定点$C作射线OC$,由作法得$\triangle MOC\cong\triangle NOC$的依据是
SSS

答案: SSS
2. 如图所示,$AB = AD$,$AC = AE$,$BC = DE$,$\angle A = 60^{\circ}$,$\angle E = 30^{\circ}$,则$\angle EBC$的度数为(
D
)

A.$30^{\circ}$
B.$45^{\circ}$
C.$60^{\circ}$
D.$90^{\circ}$
答案: D

查看更多完整答案,请扫码查看

关闭