2025年中学生世界九年级数学上册沪教版五四制


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年中学生世界九年级数学上册沪教版五四制 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年中学生世界九年级数学上册沪教版五四制》

8. 如图,在$\triangle ABC$中,已知$BE$、$AD相交于点G$,$BD = 2CD$,$AE = 2EC$,$\overrightarrow {AB} = \overrightarrow {a}$,$\overrightarrow {AC} = \overrightarrow {b}$,用向量$\overrightarrow {a}与\overrightarrow {b}表示\overrightarrow {BE}和\overrightarrow {BG}$.
答案: 解:
$\overrightarrow{BE} = \overrightarrow{AE} - \overrightarrow{AB}$
$\because AE = 2EC$,$\overrightarrow{AC} = \overrightarrow{b}$
$\therefore \overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC} = \frac{2}{3}\overrightarrow{b}$
$\because \overrightarrow{AB} = \overrightarrow{a}$
$\therefore \overrightarrow{BE} = \frac{2}{3}\overrightarrow{b} - \overrightarrow{a} = -\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$
$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$
$\because BD = 2CD$,$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$
$\therefore \overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC} = \frac{2}{3}(\overrightarrow{b} - \overrightarrow{a})$
$\therefore \overrightarrow{AD} = \overrightarrow{a} + \frac{2}{3}(\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$
设$\overrightarrow{AG} = t\overrightarrow{AD} = \frac{t}{3}\overrightarrow{a} + \frac{2t}{3}\overrightarrow{b}$,则$\overrightarrow{BG} = \overrightarrow{AG} - \overrightarrow{AB} = \frac{t}{3}\overrightarrow{a} + \frac{2t}{3}\overrightarrow{b} - \overrightarrow{a} = ( \frac{t}{3} - 1 )\overrightarrow{a} + \frac{2t}{3}\overrightarrow{b}$
又设$\overrightarrow{BG} = s\overrightarrow{BE} = s(-\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}) = -s\overrightarrow{a} + \frac{2s}{3}\overrightarrow{b}$
$\therefore \begin{cases} \frac{t}{3} - 1 = -s \\ \frac{2t}{3} = \frac{2s}{3} \end{cases}$
解得$t = s = \frac{3}{4}$
$\therefore \overrightarrow{BG} = -\frac{3}{4}\overrightarrow{a} + \frac{2}{3} × \frac{3}{4}\overrightarrow{b} = -\frac{3}{4}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$
综上,$\overrightarrow{BE} = -\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$,$\overrightarrow{BG} = -\frac{3}{4}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$
9. 如图,已知$F为\triangle ABC$外一点,点$D$、$E分别在边AB$、$AC$上,且$\frac {AD}{DB} = \frac {2}{3}$,$DE// BC$.若$\overrightarrow {DE} = \overrightarrow {a}$,$\overrightarrow {FC} = \overrightarrow {b}$,试用$\overrightarrow {a}和\overrightarrow {b}表示\overrightarrow {BF}$.
答案: 解:
∵ $ DE // BC $,$\frac{AD}{DB} = \frac{2}{3}$,
∴ $\frac{AD}{AB} = \frac{2}{5}$,$\triangle ADE \sim \triangle ABC$,相似比为$\frac{2}{5}$。
∴ $\overrightarrow{BC} = \frac{5}{2}\overrightarrow{DE} = \frac{5}{2}\overrightarrow{a}$。
∵ $\overrightarrow{BF} = \overrightarrow{BC} + \overrightarrow{CF}$,且$\overrightarrow{CF} = -\overrightarrow{FC} = -\overrightarrow{b}$,
∴ $\overrightarrow{BF} = \frac{5}{2}\overrightarrow{a} - \overrightarrow{b}$。
答案:$\overrightarrow{BF} = \frac{5}{2}\overrightarrow{a} - \overrightarrow{b}$

查看更多完整答案,请扫码查看

关闭