2025年暑假乐园现代教育出版社七年级数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假乐园现代教育出版社七年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第42页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
1. 已知$\left\{ \begin{array} { l } { x = 2 m, } \\ { y = n - 1 } \end{array} \right.$是二元一次方程组$\left\{ \begin{array} { l } { 2 x - 3 y = 2, } \\ { 4 x + 5 y = 26 } \end{array} \right.$$\begin{array} { l } { ① } \\ { ② } \end{array}$的解,求式子$m ^ { n } - 1$的值.
解:② - ①×2,$11y = 22$. 解得 $y = $
把 $y = $
原方程组的解为 $\left\{\begin{array}{l} x = $
所以 $2m = $
故 $m^n - 1 = 2^3 - 1 = 8 - 1 = $
解:② - ①×2,$11y = 22$. 解得 $y = $
2
.把 $y = $
2
代入①,得 $2x - 3×$2
$ = 2$. 解得 $x = $4
.原方程组的解为 $\left\{\begin{array}{l} x = $
4
,\\ y = $2
.\end{array}\right.$所以 $2m = $
4
,$n - 1 = $2
,即 $m = $2
,$n = $3
.故 $m^n - 1 = 2^3 - 1 = 8 - 1 = $
7
.
答案:
解:② - ①×2,$11y = 22$. 解得 $y = 2$.
把 $y = 2$ 代入①,得 $2x - 3×2 = 2$. 解得 $x = 4$.
原方程组的解为 $\left\{\begin{array}{l} x = 4,\\ y = 2.\end{array}\right.$
所以 $2m = 4$,$n - 1 = 2$,即 $m = 2$,$n = 3$.
故 $m^n - 1 = 2^3 - 1 = 8 - 1 = 7$.
把 $y = 2$ 代入①,得 $2x - 3×2 = 2$. 解得 $x = 4$.
原方程组的解为 $\left\{\begin{array}{l} x = 4,\\ y = 2.\end{array}\right.$
所以 $2m = 4$,$n - 1 = 2$,即 $m = 2$,$n = 3$.
故 $m^n - 1 = 2^3 - 1 = 8 - 1 = 7$.
2. 小明、小亮两人在解同一个二元一次方程组$\left\{ \begin{array} { l } { 2 x + \otimes y = 6, } \\ { x + \oplus y = 14, } \end{array} \right.$$\begin{array} { l } { ① } \\ { ② } \end{array}$时,由于小明看错了方程①中$y$的系数,得到二元一次方程组的解为$\left\{ \begin{array} { l } { x = 10, } \\ { y = \frac { 4 } { 3 } ; } \end{array} \right.$小亮看错了方程②中$y$的系数,得到二元一次方程组的解为$\left\{ \begin{array} { l } { x = 2, } \\ { y = 2. } \end{array} \right.$试求出原二元一次方程组并求解.
解:把 $\left\{\begin{array}{l} x = 10,\\ y = \frac{4}{3}\end{array}\right.$ 代入方程②,得 $10 + \oplus × \frac{4}{3} = 14$. 解得 $\oplus =$
把 $\left\{\begin{array}{l} x = 2,\\ y = 2\end{array}\right.$ 代入方程①,得 $2×2 + \otimes ×2 = 6$. 解得 $\otimes =$
所以原方程组为 $\left\{\begin{array}{l} 2x + y = 6, ①\\ x + 3y = 14. ②\end{array}\right.$
由①,得 $y = 6 - 2x$. ③
把③代入②,得 $x + 3(6 - 2x) = 14$.
解得 $x =$
把 $x = \frac{4}{5}$ 代入③,得 $y = 6 - 2×\frac{4}{5} =$
所以原方程组的解是 $\left\{\begin{array}{l} x =$
解:把 $\left\{\begin{array}{l} x = 10,\\ y = \frac{4}{3}\end{array}\right.$ 代入方程②,得 $10 + \oplus × \frac{4}{3} = 14$. 解得 $\oplus =$
3
.把 $\left\{\begin{array}{l} x = 2,\\ y = 2\end{array}\right.$ 代入方程①,得 $2×2 + \otimes ×2 = 6$. 解得 $\otimes =$
1
.所以原方程组为 $\left\{\begin{array}{l} 2x + y = 6, ①\\ x + 3y = 14. ②\end{array}\right.$
由①,得 $y = 6 - 2x$. ③
把③代入②,得 $x + 3(6 - 2x) = 14$.
解得 $x =$
$\frac{4}{5}$
.把 $x = \frac{4}{5}$ 代入③,得 $y = 6 - 2×\frac{4}{5} =$
$\frac{22}{5}$
.所以原方程组的解是 $\left\{\begin{array}{l} x =$
$\frac{4}{5}$
,\\ y =$$\frac{22}{5}$
.\end{array}\right.$
答案:
解:把 $\left\{\begin{array}{l} x = 10,\\ y = \frac{4}{3}\end{array}\right.$ 代入方程②,得 $10 + \oplus × \frac{4}{3} = 14$. 解得 $\oplus = 3$.
把 $\left\{\begin{array}{l} x = 2,\\ y = 2\end{array}\right.$ 代入方程①,得 $2×2 + \otimes ×2 = 6$. 解得 $\otimes = 1$.
所以原方程组为 $\left\{\begin{array}{l} 2x + y = 6, ①\\ x + 3y = 14. ②\end{array}\right.$
由①,得 $y = 6 - 2x$. ③
把③代入②,得 $x + 3(6 - 2x) = 14$.
解得 $x = \frac{4}{5}$.
把 $x = \frac{4}{5}$ 代入③,得 $y = 6 - 2×\frac{4}{5} = \frac{22}{5}$.
所以原方程组的解是 $\left\{\begin{array}{l} x = \frac{4}{5},\\ y = \frac{22}{5}.\end{array}\right.$
把 $\left\{\begin{array}{l} x = 2,\\ y = 2\end{array}\right.$ 代入方程①,得 $2×2 + \otimes ×2 = 6$. 解得 $\otimes = 1$.
所以原方程组为 $\left\{\begin{array}{l} 2x + y = 6, ①\\ x + 3y = 14. ②\end{array}\right.$
由①,得 $y = 6 - 2x$. ③
把③代入②,得 $x + 3(6 - 2x) = 14$.
解得 $x = \frac{4}{5}$.
把 $x = \frac{4}{5}$ 代入③,得 $y = 6 - 2×\frac{4}{5} = \frac{22}{5}$.
所以原方程组的解是 $\left\{\begin{array}{l} x = \frac{4}{5},\\ y = \frac{22}{5}.\end{array}\right.$
查看更多完整答案,请扫码查看