2025年暑假乐园现代教育出版社七年级数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假乐园现代教育出版社七年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第14页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
2. 下列命题中的假命题是(
A. 经过两点有且只有一条直线
B. 一个有理数不是正数就是负数
C. 若$∠1+∠2=90^{\circ }$,则$∠1$与$∠2$互为余角
D. 两直线平行,同旁内角互补
B
)A. 经过两点有且只有一条直线
B. 一个有理数不是正数就是负数
C. 若$∠1+∠2=90^{\circ }$,则$∠1$与$∠2$互为余角
D. 两直线平行,同旁内角互补
答案:
B
3. 如图2,下列推理中错误的是(

A. $\because AB// CD$,$\therefore ∠A=∠1$
B. $\because AD// BC$,$\therefore ∠A+∠B=180^{\circ }$
C. $\because ∠1=∠C$,$\therefore AD// BC$
D. $\because ∠A=∠C$,$\therefore AB// CD$
D
) A. $\because AB// CD$,$\therefore ∠A=∠1$
B. $\because AD// BC$,$\therefore ∠A+∠B=180^{\circ }$
C. $\because ∠1=∠C$,$\therefore AD// BC$
D. $\because ∠A=∠C$,$\therefore AB// CD$
答案:
D
4. 如图3,在四边形$ABCD$中,若$∠1=∠2$,$∠D=62^{\circ }$,则$∠BCD=$

$118^{\circ}$
.
答案:
$118^{\circ}$
5. 如图4,$E$为$AB$上一点,$EF// AC$交$AF$于点$F$,且$AF$平分$∠BAC$. 求证:$∠BAC=2∠1$.
证明:因为 $EF // AC$(已知),
所以 $∠1 = ∠FAC$(
又 $AF$ 平分 $∠BAC$(已知),
所以 $∠BAF = ∠FAC$(
所以 $∠BAF = ∠1$(
所以 $∠BAC = ∠BAF + ∠FAC = 2∠1$.
证明:因为 $EF // AC$(已知),
所以 $∠1 = ∠FAC$(
两直线平行,同位角相等
).又 $AF$ 平分 $∠BAC$(已知),
所以 $∠BAF = ∠FAC$(
角平分线的定义
).所以 $∠BAF = ∠1$(
等量代换
).所以 $∠BAC = ∠BAF + ∠FAC = 2∠1$.
答案:
证明:因为 $EF // AC$(已知),
所以 $∠1 = ∠FAC$(两直线平行,同位角相等).
又 $AF$ 平分 $∠BAC$(已知),
所以 $∠BAF = ∠FAC$(角平分线的定义).
所以 $∠BAF = ∠1$(等量代换).
所以 $∠BAC = ∠BAF + ∠FAC = 2∠1$.
所以 $∠1 = ∠FAC$(两直线平行,同位角相等).
又 $AF$ 平分 $∠BAC$(已知),
所以 $∠BAF = ∠FAC$(角平分线的定义).
所以 $∠BAF = ∠1$(等量代换).
所以 $∠BAC = ∠BAF + ∠FAC = 2∠1$.
查看更多完整答案,请扫码查看