5. 下列运算正确的是 (
A. $\sqrt {2}+\sqrt {6}=\sqrt {8}$
B. $3\sqrt {2}-\sqrt {2}=3$
C. $1÷\sqrt {3}×\frac {1}{\sqrt {3}}=1$
D. $\sqrt {5}×\sqrt {15}=5\sqrt {3}$
D
)A. $\sqrt {2}+\sqrt {6}=\sqrt {8}$
B. $3\sqrt {2}-\sqrt {2}=3$
C. $1÷\sqrt {3}×\frac {1}{\sqrt {3}}=1$
D. $\sqrt {5}×\sqrt {15}=5\sqrt {3}$
答案:
D
6. 填空:
(1)$\sqrt {5}×\sqrt {\frac {1}{5}}=$
(2)$\sqrt {7}×\sqrt {21}=$
(3)$\frac {\sqrt {18}}{\sqrt {3}}=$
(4)$\sqrt {54}÷\sqrt {3}=$
(5)$2\sqrt {8}-3\sqrt {8}+5\sqrt {8}=$
(1)$\sqrt {5}×\sqrt {\frac {1}{5}}=$
1
;(2)$\sqrt {7}×\sqrt {21}=$
$7 \sqrt{3}$
;(3)$\frac {\sqrt {18}}{\sqrt {3}}=$
$\sqrt{6}$
;(4)$\sqrt {54}÷\sqrt {3}=$
$3 \sqrt{2}$
;(5)$2\sqrt {8}-3\sqrt {8}+5\sqrt {8}=$
$8 \sqrt{2}$
。
答案:
(1)1
(2)$7 \sqrt{3}$
(3)$\sqrt{6}$
(4)$3 \sqrt{2}$
(5)$8 \sqrt{2}$
(1)1
(2)$7 \sqrt{3}$
(3)$\sqrt{6}$
(4)$3 \sqrt{2}$
(5)$8 \sqrt{2}$
7. 计算:
(1)$\sqrt {\frac {2}{5}}×\sqrt {50}$; (2)$\sqrt {1\frac {2}{3}}÷\sqrt {\frac {5}{6}}$;
(3)$4\sqrt {15}×2\sqrt {3}÷\sqrt {5}$; (4)$\frac {\sqrt {21}×\sqrt {3}}{\sqrt {7}}$;
(5)$\sqrt {18}-\sqrt {32}+\sqrt {2}$; (6)$\sqrt {27}-\sqrt {12}+\sqrt {45}$。
(1)$\sqrt {\frac {2}{5}}×\sqrt {50}$; (2)$\sqrt {1\frac {2}{3}}÷\sqrt {\frac {5}{6}}$;
(3)$4\sqrt {15}×2\sqrt {3}÷\sqrt {5}$; (4)$\frac {\sqrt {21}×\sqrt {3}}{\sqrt {7}}$;
(5)$\sqrt {18}-\sqrt {32}+\sqrt {2}$; (6)$\sqrt {27}-\sqrt {12}+\sqrt {45}$。
答案:
(1)$2 \sqrt{5}$
(2)$\sqrt{2}$
(3)24
(4)3
(5)0
(6)$\sqrt{3} + 3 \sqrt{5}$
(1)$2 \sqrt{5}$
(2)$\sqrt{2}$
(3)24
(4)3
(5)0
(6)$\sqrt{3} + 3 \sqrt{5}$
8. 若一个直角三角形的斜边长为$3\sqrt {2}cm$,一条直角边长为$2\sqrt {2}cm$,它的面积是
$2 \sqrt{5}$
$cm^{2}$。
答案:
$2 \sqrt{5}$
9. 我们规定运算符号“$\triangle $”的意义是:当$a>b$时,$a\triangle b=a+b$;当$a≤b$时,$a\triangle b=a-b$。其他运算符号的意义不变,计算:$(\sqrt {3}\triangle \sqrt {2})-(2\sqrt {3}\triangle 3\sqrt {2})=$
$- \sqrt{3} + 4 \sqrt{2}$
。
答案:
$- \sqrt{3} + 4 \sqrt{2}$
10. 计算:
(1)$6×\sqrt {\frac {1}{3}}-\sqrt {27}=$
(2)$\frac {2}{\sqrt {3}}-\sqrt {\frac {1}{3}}=$
(3)$\frac {\sqrt {20}}{2}-\frac {5}{4}\sqrt {\frac {1}{5}}=$
(1)$6×\sqrt {\frac {1}{3}}-\sqrt {27}=$
$-\sqrt{3}$
;(2)$\frac {2}{\sqrt {3}}-\sqrt {\frac {1}{3}}=$
$\frac{\sqrt{3}}{3}$
;(3)$\frac {\sqrt {20}}{2}-\frac {5}{4}\sqrt {\frac {1}{5}}=$
$\frac{3\sqrt{5}}{4}$
。
答案:
(1)$- \sqrt{3}$
(2)$\frac{\sqrt{3}}{3}$
(3)$\frac{3 \sqrt{5}}{4}$
(1)$- \sqrt{3}$
(2)$\frac{\sqrt{3}}{3}$
(3)$\frac{3 \sqrt{5}}{4}$
11. 计算:
(1)$\sqrt {16x}+\sqrt {64x}$;
(2)$2\sqrt {12}-6\sqrt {\frac {1}{3}}+3\sqrt {48}$;
(3)$\sqrt {27}-\sqrt {\frac {2}{3}}+2\sqrt {\frac {1}{6}}+\sqrt {12}$。
(1)$\sqrt {16x}+\sqrt {64x}$;
(2)$2\sqrt {12}-6\sqrt {\frac {1}{3}}+3\sqrt {48}$;
(3)$\sqrt {27}-\sqrt {\frac {2}{3}}+2\sqrt {\frac {1}{6}}+\sqrt {12}$。
答案:
解:
(1)原式$= 4 \sqrt{x} + 8 \sqrt{x} = (4 + 8) \sqrt{x} = 12 \sqrt{x}$。
(2)原式$= 4 \sqrt{3} - 2 \sqrt{3} + 12 \sqrt{3} = 14 \sqrt{3}$。
(3)解: 原式$= 3 \sqrt{3} - \frac{\sqrt{6}}{3} + \frac{2 \sqrt{6}}{6} + 2 \sqrt{3} = 5 \sqrt{3} - \frac{2 \sqrt{6}}{6} + \frac{2 \sqrt{6}}{6} = 5 \sqrt{3}$。
(1)原式$= 4 \sqrt{x} + 8 \sqrt{x} = (4 + 8) \sqrt{x} = 12 \sqrt{x}$。
(2)原式$= 4 \sqrt{3} - 2 \sqrt{3} + 12 \sqrt{3} = 14 \sqrt{3}$。
(3)解: 原式$= 3 \sqrt{3} - \frac{\sqrt{6}}{3} + \frac{2 \sqrt{6}}{6} + 2 \sqrt{3} = 5 \sqrt{3} - \frac{2 \sqrt{6}}{6} + \frac{2 \sqrt{6}}{6} = 5 \sqrt{3}$。
查看更多完整答案,请扫码查看