解:(1)$\sqrt {5}×\sqrt {7}=\sqrt {5×7}=$
(2)$\sqrt {\frac {1}{3}}×\sqrt {9}=$
(3)$\sqrt {2}×\sqrt {6}=\sqrt {2×6}=\sqrt {12}=$
(4)$(2\sqrt {7})^{2}=2\sqrt {7}×2\sqrt {7}=$
$\sqrt{35}$
。(2)$\sqrt {\frac {1}{3}}×\sqrt {9}=$
$\sqrt{\frac{1}{3} × 9}$
$=\sqrt {3}$。(3)$\sqrt {2}×\sqrt {6}=\sqrt {2×6}=\sqrt {12}=$
$\sqrt{4 × 3}$
$=2\sqrt {3}$。(4)$(2\sqrt {7})^{2}=2\sqrt {7}×2\sqrt {7}=$
$2^{2} × (\sqrt{7})^{2}$
$=4×7=28$。
答案:
(1)$\sqrt{35}$
(2)$\sqrt{\frac{1}{3} × 9}$
(3)$\sqrt{4 × 3}$
(4)$2^{2} × (\sqrt{7})^{2}$
(1)$\sqrt{35}$
(2)$\sqrt{\frac{1}{3} × 9}$
(3)$\sqrt{4 × 3}$
(4)$2^{2} × (\sqrt{7})^{2}$
解:(1)$\frac {\sqrt {20}}{\sqrt {5}}=$
(2)$\sqrt {\frac {1}{4}}÷\sqrt {\frac {1}{16}}=$
(3)$\frac {\sqrt {64}}{\sqrt {8}}=\sqrt {\frac {64}{8}}=\sqrt {8}=$
$\sqrt{\frac{20}{5}}$
$=\sqrt {4}=2$。(2)$\sqrt {\frac {1}{4}}÷\sqrt {\frac {1}{16}}=$
$\sqrt{\frac{1}{4} ÷ \frac{1}{16}}$
$=\sqrt {\frac {1}{4}×16}=\sqrt {4}=2$。(3)$\frac {\sqrt {64}}{\sqrt {8}}=\sqrt {\frac {64}{8}}=\sqrt {8}=$
$2 \sqrt{2}$
。
答案:
(1)$\sqrt{\frac{20}{5}}$
(2)$\sqrt{\frac{1}{4} ÷ \frac{1}{16}}$
(3)$2 \sqrt{2}$
(1)$\sqrt{\frac{20}{5}}$
(2)$\sqrt{\frac{1}{4} ÷ \frac{1}{16}}$
(3)$2 \sqrt{2}$
C. 下列二次根式中,最简二次根式是 (
A. $\sqrt {22}$
B. $\sqrt {\frac {3}{5}}$
C. $\sqrt {54}$
D. $\sqrt {0.4}$
A
)A. $\sqrt {22}$
B. $\sqrt {\frac {3}{5}}$
C. $\sqrt {54}$
D. $\sqrt {0.4}$
答案:
A
D. 计算:$\sqrt {48}+\sqrt {20}+\sqrt {12}-\sqrt {5}$。
解:$\sqrt {48}+\sqrt {20}+\sqrt {12}-\sqrt {5}$
$=$
$=6\sqrt {3}+\sqrt {5}$。
解:$\sqrt {48}+\sqrt {20}+\sqrt {12}-\sqrt {5}$
$=$
$4 \sqrt{3} + 2 \sqrt{5} + 2 \sqrt{3} - \sqrt{5}$
;$=6\sqrt {3}+\sqrt {5}$。
答案:
$4 \sqrt{3} + 2 \sqrt{5} + 2 \sqrt{3} - \sqrt{5}$
1. 计算:
(1)$\sqrt {5}×\sqrt {\frac {7}{5}}=$
(2)$\sqrt {\frac {1}{2}}×\sqrt {18}=$
(3)$2\sqrt {3}×\sqrt {2}=$
(4)$(-2\sqrt {5})^{2}=$
(1)$\sqrt {5}×\sqrt {\frac {7}{5}}=$
$\sqrt{7}$
;(2)$\sqrt {\frac {1}{2}}×\sqrt {18}=$
3
;(3)$2\sqrt {3}×\sqrt {2}=$
$2 \sqrt{6}$
;(4)$(-2\sqrt {5})^{2}=$
20
。
答案:
(1)$\sqrt{7}$
(2)3
(3)$2 \sqrt{6}$
(4)20
(1)$\sqrt{7}$
(2)3
(3)$2 \sqrt{6}$
(4)20
2. 计算:
(1)$\frac {\sqrt {54}}{\sqrt {6}}=$
(2)$\sqrt {35}÷\sqrt {5}=$
(3)$\sqrt {6}÷\sqrt {\frac {3}{10}}=$
(1)$\frac {\sqrt {54}}{\sqrt {6}}=$
3
;(2)$\sqrt {35}÷\sqrt {5}=$
$\sqrt{7}$
;(3)$\sqrt {6}÷\sqrt {\frac {3}{10}}=$
$2 \sqrt{5}$
。
答案:
(1)3
(2)$\sqrt{7}$
(3)$2 \sqrt{5}$
(1)3
(2)$\sqrt{7}$
(3)$2 \sqrt{5}$
3. 下列二次根式中属于最简二次根式的是(
A. $\sqrt {2^{2}}$
B. $\sqrt {15}$
C. $\sqrt {\frac {3}{2}}$
D. $\sqrt {8}$
B
)A. $\sqrt {2^{2}}$
B. $\sqrt {15}$
C. $\sqrt {\frac {3}{2}}$
D. $\sqrt {8}$
答案:
B
4. 计算:(1)$\sqrt {8}+\sqrt {18}$;
(2)$3\sqrt {12}-\sqrt {48}+\sqrt {12}$。
(2)$3\sqrt {12}-\sqrt {48}+\sqrt {12}$。
答案:
(1)$5 \sqrt{2}$
(2)$4 \sqrt{3}$
(1)$5 \sqrt{2}$
(2)$4 \sqrt{3}$
查看更多完整答案,请扫码查看