2025年通城学典活页检测九年级数学下册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典活页检测九年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
8. (16分)如图,在Rt△ABC中,∠C = 90°,AC = 12,BC = 5.

(1)求AB的长;
(2)求$\sin A$,$\cos A$的值;
(3)求$\sin^{2}A+\cos^{2}A$的值;
(4)比较$\sin A$与$\cos B$的大小.
(1)求AB的长;
(2)求$\sin A$,$\cos A$的值;
(3)求$\sin^{2}A+\cos^{2}A$的值;
(4)比较$\sin A$与$\cos B$的大小.
答案:
(1)在Rt△ABC中,由勾股定理,得$AB = \sqrt{AC^{2}+BC^{2}}=\sqrt{12^{2}+5^{2}} = 13$
(2)在Rt△ABC中,$\sin A=\frac{BC}{AB}=\frac{5}{13}$,$\cos A=\frac{AC}{AB}=\frac{12}{13}$
(3)$\because\sin A=\frac{5}{13}$,$\cos A=\frac{12}{13}$,$\therefore\sin^{2}A+\cos^{2}A = (\frac{5}{13})^{2}+(\frac{12}{13})^{2}=1$
(4)$\because\sin A=\frac{5}{13}$,$\cos B=\frac{BC}{AB}=\frac{5}{13}$,$\therefore\sin A=\cos B$
(2)在Rt△ABC中,$\sin A=\frac{BC}{AB}=\frac{5}{13}$,$\cos A=\frac{AC}{AB}=\frac{12}{13}$
(3)$\because\sin A=\frac{5}{13}$,$\cos A=\frac{12}{13}$,$\therefore\sin^{2}A+\cos^{2}A = (\frac{5}{13})^{2}+(\frac{12}{13})^{2}=1$
(4)$\because\sin A=\frac{5}{13}$,$\cos B=\frac{BC}{AB}=\frac{5}{13}$,$\therefore\sin A=\cos B$
9. (12分)如图,在Rt△ABC中,∠C = 90°,点D在边BC上,AD = BC = 5,$\cos\angle ADC=\frac{3}{5}$. 求$\sin B$的值.
答案:
在Rt△ADC中,$\because AD = 5$,$\cos\angle ADC=\frac{CD}{AD}=\frac{3}{5}$,$\therefore CD = 3$. $\therefore$由勾股定理,得$AC=\sqrt{AD^{2}-CD^{2}}=\sqrt{5^{2}-3^{2}} = 4$. 在Rt△ABC中,由勾股定理,得$AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{4^{2}+5^{2}}=\sqrt{41}$. $\therefore\sin B=\frac{AC}{AB}=\frac{4}{\sqrt{41}}=\frac{4\sqrt{41}}{41}$
10. (16分)如图,在Rt△ABC中,∠ACB = 90°,$\sin A=\frac{4}{5}$,BC = 8,D是AB的中点,过点B作CD的垂线,交CD的延长线于点E. 求:
(1)线段CD的长;
(2)$\cos\angle ABE$的值.
(1)线段CD的长;
(2)$\cos\angle ABE$的值.
答案:
(1)在Rt△ABC中,$\because\angle ACB = 90^{\circ}$,$BC = 8$,$\sin A=\frac{BC}{AB}=\frac{4}{5}$,$\therefore AB = 10$. $\because D$是$AB$的中点,$\therefore CD=\frac{1}{2}AB = 5$
(2)在Rt△ABC中,由勾股定理,得$AC=\sqrt{AB^{2}-BC^{2}}=\sqrt{10^{2}-8^{2}} = 6$. $\because D$是$AB$的中点,$\therefore BD=\frac{1}{2}AB = 5$. $\therefore S_{\triangle BDC}=\frac{1}{2}S_{\triangle ABC}$,即$\frac{1}{2}CD\cdot BE=\frac{1}{2}\times\frac{1}{2}AC\cdot BC$. $\therefore BE=\frac{AC\cdot BC}{2CD}=\frac{6\times8}{2\times5}=\frac{24}{5}$. $\therefore$在Rt△BDE中,$\cos\angle DBE=\frac{BE}{BD}=\frac{\frac{24}{5}}{5}=\frac{24}{25}$,即$\cos\angle ABE=\frac{24}{25}$
(2)在Rt△ABC中,由勾股定理,得$AC=\sqrt{AB^{2}-BC^{2}}=\sqrt{10^{2}-8^{2}} = 6$. $\because D$是$AB$的中点,$\therefore BD=\frac{1}{2}AB = 5$. $\therefore S_{\triangle BDC}=\frac{1}{2}S_{\triangle ABC}$,即$\frac{1}{2}CD\cdot BE=\frac{1}{2}\times\frac{1}{2}AC\cdot BC$. $\therefore BE=\frac{AC\cdot BC}{2CD}=\frac{6\times8}{2\times5}=\frac{24}{5}$. $\therefore$在Rt△BDE中,$\cos\angle DBE=\frac{BE}{BD}=\frac{\frac{24}{5}}{5}=\frac{24}{25}$,即$\cos\angle ABE=\frac{24}{25}$
查看更多完整答案,请扫码查看