2025年小升初考试新题型新考法真题精选详解数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小升初考试新题型新考法真题精选详解数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年小升初考试新题型新考法真题精选详解数学》

1. $\frac{6\times4014 + 9\times4016+\frac{1}{2}}{3\times4014 + 3\times6024+\frac{1}{4}}$
答案: 原式$=\frac{2\times3\times4014 + 2\times9\times2008 + 2\times\frac{1}{4}}{3\times4014 + 9\times2008+\frac{1}{4}}$
$=\frac{2\times(3\times4014 + 9\times2008+\frac{1}{4})}{3\times4014 + 9\times2008+\frac{1}{4}}$
$=2$
2. $\frac{12345654321}{777777\times999999}$
答案: 原式$=\frac{111111\times111111}{7\times111111\times9\times111111}$
$=\frac{1}{7\times9}$
$=\frac{1}{63}$
3. $\frac{2020+\frac{1}{2019}}{2019+\frac{1}{2020}}+\frac{2018+\frac{1}{2019}}{2019+\frac{1}{2018}}$
答案: 原式$=\frac{\frac{2020\times2019 + 1}{2019}}{\frac{2020\times2019 + 1}{2020}}+\frac{\frac{2018\times2019 + 1}{2019}}{\frac{2018\times2019 + 1}{2018}}$
$=\frac{2020}{2019}+\frac{2018}{2019}$
$=2$
4. $\frac{1}{21}+\frac{202}{2121}+\frac{50505}{212121}+\frac{13131313}{21212121}$
答案: 原式$=\frac{1}{21}+\frac{2\times101}{21\times101}+\frac{5\times10101}{21\times10101}+\frac{13\times1010101}{21\times1010101}$
$=\frac{1}{21}+\frac{2}{21}+\frac{5}{21}+\frac{13}{21}$
$=1$
5. $\frac{5\times6\div4 + 2.5\times3\div2}{2\times9\div8 + 1\times4.5\div4}$
答案: 原式$=\frac{(5\times6\div4 + 2.5\times3\div2)\times8}{(2\times9\div8 + 1\times4.5\div4)\times8}$
$=\frac{60 + 30}{18+9}$
$=3\frac{1}{3}$
6. $3007\div3007\frac{3007}{3008}+\frac{1}{3009}$
答案: 原式$=3007\div3007\div1\frac{1}{3008}+\frac{1}{3009}$
$=1\div\frac{3009}{3008}+\frac{1}{3009}$
$=\frac{3008}{3009}+\frac{1}{3009}$
$=1$
7. $\frac{1 + 2+3 + 4+5 + 6+7 + 8+7 + 6+5 + 4+3 + 2+1}{88888888\times88888888}$
答案: 原式$=\frac{8\times8}{8\times11111111\times8\times11111111}$
$=\frac{1}{11111111\times11111111}$
$=\frac{1}{123456787654321}$
8. $\frac{2\times3\times5 + 8\times12\times20+10\times15\times25}{3\times5\times7 + 12\times20\times28+15\times25\times35}$
答案: 原式$=\frac{(2\times3\times5)\times1+(2\times3\times5)\times4^{3}+(2\times3\times5)\times5^{3}}{(3\times5\times7)\times1+(3\times5\times7)\times4^{3}+(3\times5\times7)\times5^{3}}$
$=\frac{(2\times3\times5)\times(1 + 4^{3}+5^{3})}{(3\times5\times7)\times(1 + 4^{3}+5^{3})}$
$=\frac{2}{7}$
9. $2023\div2023\frac{2023}{2024}+\frac{987\times655 - 321}{987\times654 + 666}$
答案: 原式$=2023\div2023\div1\frac{1}{2024}+\frac{987\times(654 + 1)-321}{987\times654+666}$
$=1\div\frac{2025}{2024}+\frac{987\times654 + 987-321}{987\times654+666}$
$=\frac{2024}{2025}+1$
$=1\frac{2024}{2025}$
10. $[(382 + 498\times381)\times198]\div(382\times498 - 116)$
答案: 原式$=\frac{(382 + 498\times381)\times198}{(381 + 1)\times498-116}$
$=\frac{(382 + 498\times381)\times198}{382 + 498\times381}$
$=198$
11. $\frac{1\times3\times5 + 2\times6\times10+3\times9\times15+\cdots+50\times150\times250}{2\times4\times6 + 4\times8\times12+6\times12\times18+\cdots+100\times200\times300}$
答案: 原式$=\frac{1\times3\times5+1\times3\times5\times2^{3}+1\times3\times5\times3^{3}+\cdots+1\times3\times5\times50^{3}}{2\times4\times6+2\times4\times6\times2^{3}+2\times4\times6\times3^{3}+\cdots+2\times4\times6\times50^{3}}$
$=\frac{1\times3\times5\times(1 + 2^{3}+3^{3}+\cdots+50^{3})}{2\times4\times6\times(1 + 2^{3}+3^{3}+\cdots+50^{3})}$
$=\frac{5}{16}$
1. $\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+\cdots+\frac{1}{48\times50}$
答案: 原式$=(\frac{1}{2}-\frac{1}{4})\times\frac{1}{2}+(\frac{1}{4}-\frac{1}{6})\times\frac{1}{2}+(\frac{1}{6}-\frac{1}{8})\times\frac{1}{2}+\cdots+(\frac{1}{48}-\frac{1}{50})\times\frac{1}{2}$
$=(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\cdots+\frac{1}{48}-\frac{1}{50})\times\frac{1}{2}$
$=(\frac{1}{2}-\frac{1}{50})\times\frac{1}{2}$
$=\frac{12}{25}\times\frac{1}{2}$
$=\frac{6}{25}$
2. $\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\cdots+\frac{9701}{9702}+\frac{9899}{9900}$
答案: 原式$=(1 - \frac{1}{2})+(1 - \frac{1}{6})+(1 - \frac{1}{12})+(1 - \frac{1}{20})+\cdots+(1 - \frac{1}{9702})+(1 - \frac{1}{9900})$
$=99-(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots+\frac{1}{9702}+\frac{1}{9900})$
$=99-(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\cdots+\frac{1}{99\times100})$
$=99-(1 - \frac{1}{100})$
$=98\frac{1}{100}$
3. $\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}+\frac{3}{17\times20}$
答案: 原式$=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\cdots+\frac{1}{17}-\frac{1}{20}$
$=\frac{1}{2}-\frac{1}{20}$
$=\frac{9}{20}$
4. $\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\cdots+\frac{9703}{9702}+\frac{9901}{9900}$
答案: 原式$=(1+\frac{1}{2})+(1+\frac{1}{6})+(1+\frac{1}{12})+(1+\frac{1}{20})+\cdots+(1+\frac{1}{9900})$
$=99+(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\cdots+\frac{1}{9900})$
$=99+(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\cdots+\frac{1}{99\times100})$
$=99+1-\frac{1}{100}$
$=99\frac{99}{100}$
5. $\frac{1}{1\times2}+\frac{2}{2\times4}+\frac{3}{4\times7}+\frac{4}{7\times11}+\frac{5}{11\times16}+\frac{6}{16\times22}+\frac{7}{22\times29}+\frac{8}{29\times37}$
答案: 原式$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\cdots+\frac{1}{22}-\frac{1}{29}+\frac{1}{29}-\frac{1}{37}$
$=1-\frac{1}{37}$
$=\frac{36}{37}$
6. $\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+\cdots+\frac{1}{8\times9\times10}$
答案: 原式$=(\frac{1}{1\times2}-\frac{1}{2\times3})\times\frac{1}{2}+(\frac{1}{2\times3}-\frac{1}{3\times4})\times\frac{1}{2}+\cdots+(\frac{1}{8\times9}-\frac{1}{9\times10})\times\frac{1}{2}$
$=(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\cdots+\frac{1}{8\times9}-\frac{1}{9\times10})\times\frac{1}{2}$
$=(\frac{1}{1\times2}-\frac{1}{9\times10})\times\frac{1}{2}$
$=\frac{11}{45}$
7. $\frac{1^{2}+2^{2}}{1\times2}+\frac{2^{2}+3^{2}}{2\times3}+\frac{3^{2}+4^{2}}{3\times4}+\cdots+\frac{2023^{2}+2024^{2}}{2023\times2024}$
答案: 原式$=2\frac{1}{1\times2}+2\frac{1}{2\times3}+2\frac{1}{3\times4}+2\frac{1}{4\times5}+\cdots+2\frac{1}{2023\times2024}$
$=2\times2023+[(1 - \frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+\cdots+(\frac{1}{2023}-\frac{1}{2024})]$
$=4046+[1-\frac{1}{2024}]$
$=4046\frac{2023}{2024}$
8. $\frac{1}{4^{2}-1}+\frac{1}{6^{2}-1}+\frac{1}{8^{2}-1}+\cdots+\frac{1}{2022^{2}-1}+\frac{1}{2024^{2}-1}$
答案: 原式$=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\cdots+\frac{1}{2023\times2025}$
$=(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\cdots+\frac{1}{2023}-\frac{1}{2025})\times\frac{1}{2}$
$=(\frac{1}{3}-\frac{1}{2025})\times\frac{1}{2}$
$=\frac{337}{2025}$
9. $1\frac{1}{3}-\frac{7}{12}+\frac{9}{20}-\frac{11}{30}+\frac{13}{42}-\frac{15}{56}$
答案: 原式$=1+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+\frac{1}{7}-\frac{1}{7}-\frac{1}{8}$
$=1-\frac{1}{8}$
$=\frac{7}{8}$
10. $\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
答案: 原式$=\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\cdots+\frac{1}{8\times9}+\frac{1}{9\times10}$
$=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{3}-\frac{1}{10}$
$=\frac{7}{30}$

查看更多完整答案,请扫码查看

关闭