第62页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
1(1)把$\frac{30}{48}$化成最简分数。下面是两位同学的求法,请补全他们的求法,并完成你的发现。
逐次约分:$\frac{30}{48}=\frac{15}{24}$
一次约分:$\frac{30}{48}=$
我发现:一次约分时,分子、分母同时除以的数就是30和48的( )。

逐次约分:$\frac{30}{48}=\frac{15}{24}$
一次约分:$\frac{30}{48}=$
我发现:一次约分时,分子、分母同时除以的数就是30和48的( )。
答案:
5
$\frac{15}{24}=\frac{5}{8}$ $\frac{30}{48}=\frac{5}{8}$
最大公因数
$\frac{15}{24}=\frac{5}{8}$ $\frac{30}{48}=\frac{5}{8}$
最大公因数
(2)先圈出下面分数中的最简分数,再把不是最简分数的分数约成最简分数。
$\frac{12}{15}$ $\frac{17}{51}$ $\frac{13}{25}$ $\frac{24}{42}$ $\frac{5}{11}$ $\frac{22}{55}$ $\frac{45}{18}$ $\frac{27}{8}$
$\frac{12}{15}$ $\frac{17}{51}$ $\frac{13}{25}$ $\frac{24}{42}$ $\frac{5}{11}$ $\frac{22}{55}$ $\frac{45}{18}$ $\frac{27}{8}$
答案:
$\frac{13}{25}$ $\frac{5}{11}$ $\frac{27}{8}$
$\frac{12}{15}=\frac{4}{5}$ $\frac{17}{51}=\frac{1}{3}$ $\frac{24}{42}=\frac{4}{7}$ $\frac{22}{55}=\frac{2}{5}$
$\frac{45}{18}=\frac{5}{2}$
$\frac{12}{15}=\frac{4}{5}$ $\frac{17}{51}=\frac{1}{3}$ $\frac{24}{42}=\frac{4}{7}$ $\frac{22}{55}=\frac{2}{5}$
$\frac{45}{18}=\frac{5}{2}$
2(1)$\frac{6}{24}$的分子和分母的最大公因数是( ),$\frac{6}{24}$化成最简分数是( )。
答案:
6 $\frac{1}{4}$
(2)分数单位是$\frac{1}{8}$的最简真分数有( ),分子是8的最简假分数有( )。
答案:
$\frac{1}{8}$、$\frac{3}{8}$、$\frac{5}{8}$、$\frac{7}{8}$ $\frac{8}{1}$、$\frac{8}{3}$、$\frac{8}{5}$、$\frac{8}{7}$
(3)明明在化简一个分数时,用2、3、7各约了一次,得到$\frac{1}{4}$。原来的分数是( )。
答案:
$\frac{42}{168}$
3A=$\frac{38}{57}$,B=$\frac{102}{153}$。下面是两位同学的说法,他们说得对吗?请说明理由。
分数A更大,因为它的分子和分母相差的少。
分数B更大,因为它的分子和分母都比分数A的大。

分数A更大,因为它的分子和分母相差的少。
分数B更大,因为它的分子和分母都比分数A的大。
答案:
答:他们说得不对。
理由:A=$\frac{38}{57}$=$\frac{2}{3}$,B=$\frac{102}{153}$=$\frac{2}{3}$,A=B。所以他们说得不对。
理由:A=$\frac{38}{57}$=$\frac{2}{3}$,B=$\frac{102}{153}$=$\frac{2}{3}$,A=B。所以他们说得不对。
4李老师正在从电脑上复制一个80GB的文件到U盘上,已经传输了52GB。已传输的部分和未传输的部分分别占整个文件的几分之几?
正在将1个项目从桌面复制到U盘
已完成
剩余项目1(28 GB)

正在将1个项目从桌面复制到U盘
已完成
剩余项目1(28 GB)
答案:
52÷80=$\frac{52}{80}$ $\frac{52}{80}$=$\frac{13}{20}$
28÷80=$\frac{28}{80}$ $\frac{28}{80}$=$\frac{7}{20}$
答:已传输的部分和未传输的部分分别占整个文件的$\frac{13}{20}$和$\frac{7}{20}$。
28÷80=$\frac{28}{80}$ $\frac{28}{80}$=$\frac{7}{20}$
答:已传输的部分和未传输的部分分别占整个文件的$\frac{13}{20}$和$\frac{7}{20}$。
5有一个分数,分子和分母相加等于29,分子减去1后,约分为$\frac{1}{3}$,那么原分数为多少?
下面是两位同学的推理方法,请你试着补充完整。
正推法:分子和分母相加等于29,分子减去1→分子和分母相加等于( ),约分为$\frac{1}{3}$→分子占( )份,分母占( )份,约分前分数为( ),分子加上1→原分数为( )
逆推法:$\frac{1}{3}$约分前分数为(列举分母较小的6个)→分子加上1→( ),筛选出分子和分母相加等于29的分数→原分数为( )

下面是两位同学的推理方法,请你试着补充完整。
正推法:分子和分母相加等于29,分子减去1→分子和分母相加等于( ),约分为$\frac{1}{3}$→分子占( )份,分母占( )份,约分前分数为( ),分子加上1→原分数为( )
逆推法:$\frac{1}{3}$约分前分数为(列举分母较小的6个)→分子加上1→( ),筛选出分子和分母相加等于29的分数→原分数为( )
答案:
正推法:28 1 3 $\frac{7}{21}$ $\frac{8}{21}$
逆推法:$\frac{2}{6}$、$\frac{3}{9}$、$\frac{4}{12}$、$\frac{5}{15}$、$\frac{6}{18}$、$\frac{7}{21}$
$\frac{3}{6}$、$\frac{4}{9}$、$\frac{5}{12}$、$\frac{6}{15}$、$\frac{7}{18}$、$\frac{8}{21}$ $\frac{8}{21}$
解析 原分数的分子和分母相加等于29,分子减去1后,分子和分母的和为29−1=28,约分后为$\frac{1}{3}$,分子占1份,分母占3份。28÷(1+3)=7,所以约分前的分数为$\frac{7}{21}$,分子加上1,所以原分数为$\frac{8}{21}$。
逆推法是枚举法,先列举出约分前的分数可能为$\frac{2}{6}$、$\frac{3}{9}$、$\frac{4}{12}$、$\frac{5}{15}$、$\frac{6}{18}$、$\frac{7}{21}$;分子加上1后可能为$\frac{3}{6}$、$\frac{4}{9}$、$\frac{5}{12}$、$\frac{6}{15}$、$\frac{7}{18}$、$\frac{8}{21}$;筛选出分子和分母相加等于29的分数,得出原分数为$\frac{8}{21}$。
逆推法:$\frac{2}{6}$、$\frac{3}{9}$、$\frac{4}{12}$、$\frac{5}{15}$、$\frac{6}{18}$、$\frac{7}{21}$
$\frac{3}{6}$、$\frac{4}{9}$、$\frac{5}{12}$、$\frac{6}{15}$、$\frac{7}{18}$、$\frac{8}{21}$ $\frac{8}{21}$
解析 原分数的分子和分母相加等于29,分子减去1后,分子和分母的和为29−1=28,约分后为$\frac{1}{3}$,分子占1份,分母占3份。28÷(1+3)=7,所以约分前的分数为$\frac{7}{21}$,分子加上1,所以原分数为$\frac{8}{21}$。
逆推法是枚举法,先列举出约分前的分数可能为$\frac{2}{6}$、$\frac{3}{9}$、$\frac{4}{12}$、$\frac{5}{15}$、$\frac{6}{18}$、$\frac{7}{21}$;分子加上1后可能为$\frac{3}{6}$、$\frac{4}{9}$、$\frac{5}{12}$、$\frac{6}{15}$、$\frac{7}{18}$、$\frac{8}{21}$;筛选出分子和分母相加等于29的分数,得出原分数为$\frac{8}{21}$。
查看更多完整答案,请扫码查看