2025年全国重点高中提前招生同步强化全真试卷八年级数学上册


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全国重点高中提前招生同步强化全真试卷八年级数学上册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全国重点高中提前招生同步强化全真试卷八年级数学上册》

1. (2022·深圳市第九届“鹏程杯”邀请赛)$a^{4}(b^{2}-c^{2})+b^{4}(c^{2}-a^{2})+c^{4}(a^{2}-b^{2})$的一个因式为 (
D
)

A.$(a + b)^{2}$
B.$(a - b)^{2}$
C.$a^{2} + b^{2}$
D.$a^{2} - b^{2}$
E.以上都不对
答案: 1.D提示:原式$=a^{4}b^{2}-a^{4}c^{2}+b^{2}c^{2}-a^{2}b^{4}+a^{4}c^{2}-b^{2}c^{4}=(a^{4}b^{2}-a^{2}b^{4}-a^{2}c^{2}+a^{4}c^{2})+(b^{2}c^{2}-b^{2}c^{4})=a^{2}(a^{2}b^{2}-a^{2}c^{2}-b^{2}+c^{2})+b^{2}c^{2}(b^{2}-c^{2})=a^{2}[a^{2}(b^{2}-c^{2})-(b^{2}-c^{2})]+b^{2}c^{2}(b^{2}-c^{2})=a^{2}(b^{2}-c^{2})(a^{2}-1)+b^{2}c^{2}(b^{2}-c^{2})=(b^{2}-c^{2})(a^{2}-a^{2}+b^{2}c^{2})=(b^{2}-c^{2})[a^{2}(b^{2}-c^{2})-(b^{2}+c^{2})b^{2}+b^{2}c^{2}]=(b^{2}-c^{2})[a^{2}(b^{2}-c^{2})-b^{4}-b^{2}c^{2}+b^{2}c^{2}]=(b^{2}-c^{2})[a^{2}(b^{2}-c^{2})-a^{2}c^{2}+b^{2}c^{2}-a^{2}c^{2}]=(b^{2}-c^{2})[(a^{2}-a^{2}c^{2})+(b^{2}c^{2}-a^{2}b^{2})]=(b^{2}-c^{2})[a^{2}(a^{2}-c^{2})-b^{2}(a^{2}-c^{2})]=(b^{2}-c^{2})(a^{2}-b^{2})(a^{2}-c^{2})$,$\therefore$原式的一个因式为$a^{2}-b^{2}$.故选D.
2. (江苏自主招生)已知$a,b,c$是正整数,且$a > b,a^{2} - ab - ac + bc = 11$,则$a - c$等于 (
D
)

A.$-1$
B.$-1$或$-11$
C.$1$
D.$1$或$11$
答案: 2.D提示:原式$=(a^{2}-ab)-(ac-bc)=a(a-b)-c(a-b)=(a-b)(a-c)=11$.因为$a>b$,$a$,$b$,$c$是正整数,所以$a - b>0$,$a - b = 11$或$1$,$a - c = 1$或$11$,故$b = 1$,$c = 3$,$d = 4$,$e = 5$,$f = 6$,选D.
3. (2023 秋·重庆九龙坡区期末)已知六元方程$a + b + c + d + e + f = b^{2} - a^{2} + d^{2} - c^{2} + f^{2} - e^{2}$,满足$a < b < c < d < e < f$,且$a,b,c,d,e,f$为正整数,则下列关于这个六元方程的正整数解的说法中正确的个数为 (
D
)
①$a = 1,b = 2,c = 3,d = 4,e = 5,f = 6$是该六元方程的一组解;
②连续的六个正整数一定是该六元方程的解;
③若$a < b < c < d < e < f < 10$,则该六元方程有 20 组解;
④若$a + b + c + d + e + f = 23$,则该六元方程有 1 组解.

A.$1$
B.$2$
C.$3$
D.$4$
答案: 3.D提示:$\because a = 1$,$b = 2$,$c = 3$,$d = 4$,$e = 5$,$f = 6$,$\therefore a + b + c + d + e + f = 21$,$b^{2}-a^{2}+d^{2}-c^{2}+f^{2}-e^{2}=21$,$\therefore a + b + c + d + e + f = b^{2}-a^{2}+d^{2}-c^{2}+f^{2}-e^{2}$,$\therefore a = 1$,$b = 2$,$c = 3$,$d = 4$,$e = 5$,$f = 6$是该六元方程的一组解,$\therefore$①正确;设最小的正整数为$n$,那么其余的数为$n + 1$,$n + 2$,$n + 3$,$n + 4$,$n + 5$,$\therefore a + b + c + d + e + f = 6n + 15$,$b^{2}-a^{2}+d^{2}-c^{2}+f^{2}-e^{2}=(n + 1)^{2}-n^{2}+(n + 3)^{2}-(n + 2)^{2}+(n + 5)^{2}-(n + 4)^{2}=6n + 15$,$\therefore a + b + c + d + e + f = b^{2}-a^{2}+d^{2}-c^{2}+f^{2}-e^{2}$,$\therefore$连续的六个正整数一定是该六元方程的解,$\therefore$②正确;$\because a<b<c<d<e<f<10$,连续的正整数解为$1$,$2$,$3$,$4$,$5$,$6$;$2$,$3$,$4$,$5$,$6$,$7$;$3$,$4$,$5$,$6$,$7$,$8$;$4$,$5$,$6$,$7$,$8$,$9$共$4$组;$\because a + b + c + d + e + f = b^{2}-a^{2}+d^{2}-c^{2}+f^{2}-e^{2}$,$\therefore (a + b)+(c + d)+(e + f)=(b - a)(b + a)+(d - c)(d + c)+(f - e)(f + e)$,$\therefore b - a = 1$,$d - c = 1$,$f - e = 1$,$\therefore$不连续正整数解为$1$,$2$,$3$,$4$,$6$,$7$;$1$,$2$,$3$,$4$,$7$,$8$;$1$,$2$,$3$,$4$,$8$,$9$;$1$,$2$,$4$,$5$,$6$,$7$;$1$,$2$,$4$,$5$,$7$,$8$;$1$,$2$,$4$,$5$,$8$,$9$;$2$,$3$,$4$,$5$,$6$,$7$;$2$,$3$,$4$,$5$,$7$,$8$;$2$,$3$,$4$,$5$,$8$,$9$;$2$,$3$,$5$,$6$,$7$,$8$;$2$,$3$,$5$,$6$,$8$,$9$;$3$,$4$,$5$,$6$,$7$,$8$;$2$,$4$,$5$,$6$,$7$,$8$;$1$,$2$,$5$,$6$,$7$,$8$;$1$,$2$,$5$,$6$,$8$,$9$;$1$,$2$,$6$,$7$,$8$,$9$;$2$,$3$,$4$,$5$,$6$,$9$共$16$组,$\therefore$则该六元方程有$20$组解,$\therefore$③正确;$\because a + b + c + d + e + f = 23$,只有$1 + 2 + 3 + 4 + 6 + 7 = 23$,$\therefore$则该六元方程有$1$组解:$a = 1$,$b = 2$,$c = 3$,$d = 4$,$e = 6$,$f = 7$,故④正确.故选D.
4. (2023·宁波自主招生)若实数$x,y$满足$x^{3} - y^{3} + 3xy + 1 = 0$,则$x - y$可能的值 (
B
)

A.只有$1$个
B.有$2$个
C.多于$2$个但有限
D.有无数个
答案: 4.B提示:$\because x^{3}-y^{3}+3xy + 1 = 0$,$\therefore x^{3}-y^{3}+3xy = -1$①,$\because (x - y)^{3}=x^{3}-y^{3}-3x^{2}y + 3xy^{2}$②,②$-$①得:$-3x^{2}y - 3xy + 3xy^{2}=(x - y)^{3}+1$,$\frac{1}{2}(x - y + 1)[(x + y)^{2}+(x - 1)^{2}+(y + 1)^{2}]=0$,$\therefore x - y + 1 = 0$或$(x - y)^{2}+(x - 1)^{2}+(y + 1)^{2}=0$,当$x - y + 1 = 0$时$x - y = -1$;当$(x - y)^{2}+(x - 1)^{2}+(y + 1)^{2}=0$时,$\because (x + y)^{2}\geqslant0$,$(x - 1)^{2}\geqslant0$,$(y + 1)^{2}\geqslant0$,$\therefore x - 1 = 0$,$y + 1 = 0$,$\therefore x = 1$,$y = -1$,$\therefore x - y = 1 - (-1)=1 + 1 = 2$,综上可知:$x - y$的值有$2$个,为$-1$或$2$,故选B.
5. (北京市竞赛)$a^{4} + 4$分解因式的结果是 (
D
)

A.$(a^{2} + 2a - 2)(a^{2} - 2a + 2)$
B.$(a^{2} + 2a - 2)(a^{2} - 2a - 2)$
C.$(a^{2} + 2a + 2)(a^{2} - 2a - 2)$
D.$(a^{2} + 2a + 2)(a^{2} - 2a + 2)$
答案: 5.D提示:$a^{2}+4=(a^{2}+4a^{2}+4)-4a^{2}=(a^{2}+2)^{2}-(2a)^{2}=(a^{2}+2a + 2)(a^{2}-2a + 2)$.
6. (江苏省“时代杯”数学应用与创新邀请赛)设正整数$a,b,c > 100$,满足$c^{2} - 1 = a^{2}(b^{2} - 1)$,则$\frac{a}{b}$的最小值是 (
C
)

A.$\frac{1}{3}$
B.$\frac{1}{2}$
C.$2$
D.$3$
答案: 6.C提示:由已知得$c^{2}=a^{2}(b^{2}-1)+1=a^{2}b^{2}-a^{2}+1<a^{2}b^{2}$,$\therefore c<ab$,$\therefore c\leqslant ab - 1$,$\therefore a^{2}b^{2}-a^{2}+1=c^{2}\leqslant(ab - 1)^{2}$,化简,得$a^{2}\geqslant2ab$,$\therefore \frac{a}{b}\geqslant2$,故选C.
7. (“希望杯”竞赛)若$m = 2006^{2} + 2006^{2}×2007^{2} + 2007^{2}$,则$m$ (
A
)

A.是完全平方数,还是奇数
B.是完全平方数,还是偶数
C.不是完全平方数,但是是奇数
D.不是完全平方数,但是是偶数
答案: 7.A提示:设$n = 2006$,则$n + 1 = 2007$,代入原式,由已知得$m=n^{2}+n^{2}×(n + 1)^{2}+(n + 1)^{2}=n^{2}(n + 1)^{2}+2n(n + 1)+1=[n(n + 1)+1]^{2}$,$\because n(n + 1)$是$2$的倍数,$\therefore n(n + 1)+1$是奇数,$\therefore m$是完全平方数,而且还是奇数,故选A.
8. (湖北省黄冈竞赛)已知$a,b,c$为一个三角形的三边长,则$4b^{2}c^{2} - (b^{2} + c^{2} - a^{2})^{2}$的值为 (
A
)

A.恒为正
B.恒为负
C.可正可负
D.非负
答案: 8.A提示:原式$=(2bc + b^{2}+c^{2}-a^{2})(2bc - b^{2}-c^{2}+a^{2})=[(b + c)^{2}-a^{2}][a^{2}-(b - c)^{2}]=(b + c + a)(b + c - a)(a + b - c)(a - b + c)$,$\because a$,$b$,$c$是三角形的三边长,$\therefore b + c + a>0$,$\therefore b + c>a$,$a + b>c$,$a + c>b$,$\therefore 4b^{2}c^{2}-(b^{2}+c^{2}-a^{2})^{2}>0$.
9. (“学而思杯”中学生理科能力大赛)在$\triangle ABC$中,已知$AB = 37,AC = 58$,在$BC$上有一点$D$使得$AB = AD$,且$D$在$B,C$之间. 若$BD$与$DC$的长度都是整数,则$BD$的长度是
22
.
答案:
9.22提示:过点$A$作$AH\perp BC$于$H$,则$AC^{2}=AH^{2}+CH^{2}$,$AB^{2}=AH^{2}+BH^{2}$,故$AC^{2}-AB^{2}=CH^{2}-BH^{2}=(CH + BH)(CH - BH)=BC× CD$,$\because AB = 37$,$AC = 58$,$\therefore BC× CD=58^{2}-37^{2}=3×5×7×19$,$\because AC - AB<BC<AC + AB$,$\therefore 21<BC<95$,$\because BC$为整数,$\therefore BC = 35$或$BC = 57$,若$BC = 35$,则$CD = 3×19 = 57>BC$,$D$不在$B$,$C$之间,故应舍去,$\therefore$应取$BC = 57$,这时$CD = 35$,$BD = 22$.故答案为$22$. 图111
10. (温州初中数学竞赛)方程$xyz + xy + xz + yz + x + y + z = 2012$的非负整数解有
27
组.
答案: 10.27提示:原式$=(xyz + yz)+(xy + y)+(xz + z)+(x + 1)-1=yz(x + 1)+y(x + 1)+z(x + 1)+(x + 1)-1=(x + 1)(yz + y + z + 1)-1=(x + 1)[y(z + 1)+(z + 1)]-1=(x + 1)(y + 1)(z + 1)-1=2012$,$\therefore (x + 1)(y + 1)(z + 1)=2013$,$\because x$,$y$,$z$都大于$0$,①当$x + 1$,$y + 1$,$z + 1$中没有一个等于$1$时,$\therefore 2013 = 3×11×61$,共有$6$种;②当$x + 1$,$y + 1$,$z + 1$中有一个等于$1$时,I.当$x + 1 = 1$时,即$x = 0$时,$\therefore 2013 = 3×671 = 11×183 = 61×33$,有$6$种,II.当$y + 1 = 1$时,即$y = 0$时,$\therefore 2013 = 3×671 = 11×183 = 61×33$,有$6$种,III.当$z + 1 = 1$时,即$z = 0$时,$\therefore 2013 = 3×671 = 11×183 = 61×33$,有$6$种,③当$x + 1$,$y + 1$,$z + 1$中有两个等于$1$时,共$3$种,$4×6 + 3 = 27$(种).故原方程的非负整数解有$27$组.

查看更多完整答案,请扫码查看

关闭