2025年全国重点高中提前招生同步强化全真试卷八年级数学上册
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全国重点高中提前招生同步强化全真试卷八年级数学上册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第30页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
7. 如图 8 - 6,$\triangle ABC$为等边三角形,$AE = CD$,$AD$,$BE$相交于点$P$,$BQ\perp AD$于点$Q$,$PQ = 3$,$PE = 1$,则$AD$的长是(

A.4
B.5
C.6
D.7
D
)A.4
B.5
C.6
D.7
答案:
7.D 提示:$\because \triangle ABC$为等边三角形,$\therefore \angle BAC = \angle C = 60^{\circ}$,$AB = AC$,又$\because AE = CD$,$\therefore \triangle ABE \cong \triangle CAD(SAS)$,$\therefore \angle ABE = \angle CAD$,$BE = AD$,$\angle BPQ = \angle BAP + \angle ABE = \angle BAP + \angle CAD = \angle BAC = 60^{\circ}$,又$\because BQ \perp PQ$,$\therefore \angle BQP = 90^{\circ}$,$\angle PBQ = 30^{\circ}$,$\therefore PB = 2PQ = 6$,$\therefore BE = BP + PE = 6 + 1 = 7$,$\therefore AD = BE = 7$.
8. 如图 8 - 7,在直角梯形$ABCD$中,$AD// BC$,$\angle ABC = 90^{\circ}$,$AB = BC$,$E$为$AB$边上一点,$\angle BCE = 15^{\circ}$,且$AE = AD$. 连接$DE$交对角线$AC$于$H$,连接$BH$. 下列结论:①$\triangle ACD\cong \triangle ACE$;②$\triangle CDE$为等边三角形;③$\frac{EH}{BE} = 2$;④$\frac{S_{\triangle EBC}}{S_{\triangle EHC}} = \frac{AH}{CH}$. 其中正确的是(

A.①②
B.①②④
C.③④
D.①②③④
B
)A.①②
B.①②④
C.③④
D.①②③④
答案:
8.B 提示:$\because AD // BC$,$AB = BC$,$\angle ABC = 90^{\circ}$,$\therefore \angle BAC = \angle ACB = \angle CAD = 45^{\circ}$,又$\because AE = AD$,$\therefore \angle AEH = \angle ADH = 45^{\circ}$,$\therefore AC \perp DE$,又$\angle BCE = 15^{\circ}$,$\angle HCE = 30^{\circ}$,$\therefore \angle DEC = 60^{\circ}$,在$Rt\triangle HEC$中,$EH = \frac{1}{2}EC$,$\therefore DE = EC$,$\therefore \triangle CDE$为等边三角形,且$\triangle ACD \cong \triangle ACE$. 故有①②④正确.
9. (2023·福建龙岩长汀六校联考)如图 8 - 8,$AE$是$\angle CAM$的角平分线,点$B$在射线$AM$上,$DE$是线段$BC$的中垂线交$AE$于点$E$,$EF\perp AM$. 若$\angle ACB = 26^{\circ}$,$\angle CBE = 25^{\circ}$,则$\angle AED = $

39°
.
答案:
9.39° 提示:如图8−5,连接$CE$,过$E$作$ER \perp AC$于$R$,交$CD$于$Q$,$AE$交$BC$于$O$,$\because DE$是线段$BC$的中垂线,$\therefore \angle EDC = 90^{\circ}$,$CE = BE$,$\angle ECB = \angle CBE$,$\because \angle CBE = 25^{\circ}$,$\therefore \angle ECB = 25^{\circ}$,$\therefore \angle DEB = \angle CED = 90^{\circ} - 25^{\circ} = 65^{\circ}$,$\because ER \perp AC$,$ED \perp BC$,$\therefore \angle QRC = \angle QDE = 90^{\circ}$,$\therefore \angle ACB + \angle CQR = 90^{\circ}$,$\angle EQD + \angle QED = 90^{\circ}$,$\because \angle CQR = \angle EQD$,$\therefore \angle ACB = \angle QED$,$\because \angle ACB = 26^{\circ}$,$\therefore \angle QED = 26^{\circ}$,$\because AE$平分$\angle CAM$,$ER \perp AC$,$EF \perp AM$,$\therefore ER = EF$,在$Rt\triangle ERC$和$Rt\triangle EFB$中,$CE = BE$,$ER = EF$,$\therefore Rt\triangle ERC \cong Rt\triangle EFB(HL)$,$\therefore \angle EBF = \angle ACE = \angle ACB + \angle ECD = 26^{\circ} + 25^{\circ} = 51^{\circ}$,$\because \angle EFB = 90^{\circ}$,$\therefore \angle BEF = 90^{\circ} - \angle EBF = 90^{\circ} - 51^{\circ} = 39^{\circ}$,$\therefore \angle REF = \angle RED + \angle BED + \angle BEF = 26^{\circ} + 65^{\circ} + 39^{\circ} = 130^{\circ}$,$\because \angle ARE = \angle AFE = 90^{\circ}$,$\therefore \angle CAM = 360^{\circ} - 90^{\circ} - 90^{\circ} - 130^{\circ} = 50^{\circ}$,$\because AE$平分$\angle CAM$,$\therefore \angle CAE = \frac{1}{2}\angle CAM = 25^{\circ}$,$\therefore \angle DOE = \angle CAE + \angle ACB = 25^{\circ} + 26^{\circ} = 51^{\circ}$,$\because ED \perp BC$,$\angle EDB = 90^{\circ}$,$\therefore \angle AED = 90^{\circ} - \angle DOE = 90^{\circ} - 51^{\circ} = 39^{\circ}$,故答案为$39^{\circ}$.
9.39° 提示:如图8−5,连接$CE$,过$E$作$ER \perp AC$于$R$,交$CD$于$Q$,$AE$交$BC$于$O$,$\because DE$是线段$BC$的中垂线,$\therefore \angle EDC = 90^{\circ}$,$CE = BE$,$\angle ECB = \angle CBE$,$\because \angle CBE = 25^{\circ}$,$\therefore \angle ECB = 25^{\circ}$,$\therefore \angle DEB = \angle CED = 90^{\circ} - 25^{\circ} = 65^{\circ}$,$\because ER \perp AC$,$ED \perp BC$,$\therefore \angle QRC = \angle QDE = 90^{\circ}$,$\therefore \angle ACB + \angle CQR = 90^{\circ}$,$\angle EQD + \angle QED = 90^{\circ}$,$\because \angle CQR = \angle EQD$,$\therefore \angle ACB = \angle QED$,$\because \angle ACB = 26^{\circ}$,$\therefore \angle QED = 26^{\circ}$,$\because AE$平分$\angle CAM$,$ER \perp AC$,$EF \perp AM$,$\therefore ER = EF$,在$Rt\triangle ERC$和$Rt\triangle EFB$中,$CE = BE$,$ER = EF$,$\therefore Rt\triangle ERC \cong Rt\triangle EFB(HL)$,$\therefore \angle EBF = \angle ACE = \angle ACB + \angle ECD = 26^{\circ} + 25^{\circ} = 51^{\circ}$,$\because \angle EFB = 90^{\circ}$,$\therefore \angle BEF = 90^{\circ} - \angle EBF = 90^{\circ} - 51^{\circ} = 39^{\circ}$,$\therefore \angle REF = \angle RED + \angle BED + \angle BEF = 26^{\circ} + 65^{\circ} + 39^{\circ} = 130^{\circ}$,$\because \angle ARE = \angle AFE = 90^{\circ}$,$\therefore \angle CAM = 360^{\circ} - 90^{\circ} - 90^{\circ} - 130^{\circ} = 50^{\circ}$,$\because AE$平分$\angle CAM$,$\therefore \angle CAE = \frac{1}{2}\angle CAM = 25^{\circ}$,$\therefore \angle DOE = \angle CAE + \angle ACB = 25^{\circ} + 26^{\circ} = 51^{\circ}$,$\because ED \perp BC$,$\angle EDB = 90^{\circ}$,$\therefore \angle AED = 90^{\circ} - \angle DOE = 90^{\circ} - 51^{\circ} = 39^{\circ}$,故答案为$39^{\circ}$.
10. (“希望杯”初二竞赛)如图 8 - 9,已知$\triangle ABC$中,$AD$平分$\angle BAC$,$\angle C = 20^{\circ}$,$AB + BD = AC$,则$\angle B$的度数为

40°
.
答案:
10.40° 提示:在$AC$上截取$AE = AB$,连接$DE$,则可证$\triangle ABD \cong \triangle AED$,$\therefore BD = DE$,$\angle B = \angle AED$,$\because AB + BD = AC$,$\therefore AB + DE = AC$,$\because CE = DE$,$\therefore \angle EDC = \angle C = 20^{\circ}$,$\therefore \angle B = \angle AED = 40^{\circ}$.
11. (“学而思杯”中学生理科能力大赛)如图 8 - 10,已知$AB = a$,$BD = b$,$(a,b$为常数),$BC = BD$,$\angle ABD:\angle BAC:\angle ACD:\angle CBD = 1:2:4:4$,则$2S_{\triangle ABC} - S_{\triangle ABD} - S_{\triangle ACD} = $

$\frac{1}{2}ab$
.
答案:
11.$\frac{1}{2}ab$ 解:如图8−6,$\because BC = BD$,$\therefore \angle BDC = \angle BCD$(等边对等角);又$\because \angle ABD:\angle BAC:\angle ACD:\angle CBD = 1:2:4:4$,$\therefore$设$\angle ABD = x$,则$\angle BAC = 2x$,$\angle ACD = 4x$,$\angle CBD = 4x$,$\therefore \angle ABD + \angle DBC + \angle BCD + \angle ACD + \angle BAC = x + 4x + \frac{180^{\circ}-4x}{2}+ 4x + 2x = 180^{\circ}$(三角形内角和定理),解得,$x = 10^{\circ}$;$\therefore \angle ABD = 10^{\circ}$,$\angle CBD = \angle ACD = 40^{\circ}$,$\angle BCD = 70^{\circ}$;作点$D$关于$BC$的对称点$D'$,连接$BD'$,则$BD = BD'$,$\angle DBC = \angle D'BC = 40^{\circ}$,$\angle BCD' = \angle BCD = 70^{\circ}$,$\therefore \angle ABD' = \angle ABD + 2\angle DBC = 90^{\circ}$,$\angle ACD' = \angle ACD + 2\angle DBC = 180^{\circ}$,即点$D'$在$AC$的延长线上,$\therefore \triangle ABD'$是直角三角形;而$AB = a$,$BD = b$,$\therefore 2S_{\triangle ABC} - S_{\triangle ABD} - S_{\triangle BCD} = 2S_{\triangle ABC} - S_{\triangle ABD} - (S_{\triangle ABC} - S_{\triangle ABD} - S_{\triangle BCD}) = S_{\triangle ABC} + S_{\triangle BCD} = S_{\triangle ABC} + S_{\triangle BCD} = \frac{1}{2} · AB · BD' = \frac{1}{2} · AB · BD = \frac{1}{2}ab$. 故答案为$\frac{1}{2}ab$.
11.$\frac{1}{2}ab$ 解:如图8−6,$\because BC = BD$,$\therefore \angle BDC = \angle BCD$(等边对等角);又$\because \angle ABD:\angle BAC:\angle ACD:\angle CBD = 1:2:4:4$,$\therefore$设$\angle ABD = x$,则$\angle BAC = 2x$,$\angle ACD = 4x$,$\angle CBD = 4x$,$\therefore \angle ABD + \angle DBC + \angle BCD + \angle ACD + \angle BAC = x + 4x + \frac{180^{\circ}-4x}{2}+ 4x + 2x = 180^{\circ}$(三角形内角和定理),解得,$x = 10^{\circ}$;$\therefore \angle ABD = 10^{\circ}$,$\angle CBD = \angle ACD = 40^{\circ}$,$\angle BCD = 70^{\circ}$;作点$D$关于$BC$的对称点$D'$,连接$BD'$,则$BD = BD'$,$\angle DBC = \angle D'BC = 40^{\circ}$,$\angle BCD' = \angle BCD = 70^{\circ}$,$\therefore \angle ABD' = \angle ABD + 2\angle DBC = 90^{\circ}$,$\angle ACD' = \angle ACD + 2\angle DBC = 180^{\circ}$,即点$D'$在$AC$的延长线上,$\therefore \triangle ABD'$是直角三角形;而$AB = a$,$BD = b$,$\therefore 2S_{\triangle ABC} - S_{\triangle ABD} - S_{\triangle BCD} = 2S_{\triangle ABC} - S_{\triangle ABD} - (S_{\triangle ABC} - S_{\triangle ABD} - S_{\triangle BCD}) = S_{\triangle ABC} + S_{\triangle BCD} = S_{\triangle ABC} + S_{\triangle BCD} = \frac{1}{2} · AB · BD' = \frac{1}{2} · AB · BD = \frac{1}{2}ab$. 故答案为$\frac{1}{2}ab$.
12. (湖北省鄂州高中自主招生)如图 8 - 11 所示,在等边$\triangle ABC$中,$AC = 9$,点$O$在$AC$上,且$AO = 3$,点$P$是$AB$上一动点,连接$OP$,将线段$OP$绕点$O$逆时针旋转$60^{\circ}$得到线段$OD$,要使点$D$恰好落在$BC$上,则$AP$的长为

6
.
答案:
12.6 提示:如图8−7,连接$PD$,$\because \angle POD = 60^{\circ}$,$OP = OD$,$\therefore \angle 1 + \angle 2 + 60^{\circ} = 180^{\circ}$,又$\angle 1 + \angle A + \angle APO = 180^{\circ}$,$\therefore \angle 2 = \angle APO$. 同理$\angle 1 = \angle CDO$,$\therefore \triangle APO \cong \triangle COD$,$\therefore AP = OC = AC - AO = 9 - 3 = 6$.
12.6 提示:如图8−7,连接$PD$,$\because \angle POD = 60^{\circ}$,$OP = OD$,$\therefore \angle 1 + \angle 2 + 60^{\circ} = 180^{\circ}$,又$\angle 1 + \angle A + \angle APO = 180^{\circ}$,$\therefore \angle 2 = \angle APO$. 同理$\angle 1 = \angle CDO$,$\therefore \triangle APO \cong \triangle COD$,$\therefore AP = OC = AC - AO = 9 - 3 = 6$.
13. (衡阳县自主招生)如图 8 - 12,在$\triangle ABC$中,$AB = AC$,$CM$平分$\angle ACB$,与$AB$交于点$M$,$AD\perp BC$于点$D$,$ME\perp BC$于点$E$,$MF\perp MC$与$BC$交于点$F$,若$CF = 12$,则$DE = $

3
.
答案:
13.3 提示:取$CF$的中点$G$,连接$MG$,设$DE = x$,$EF = y$,可得$DC = CF - EF - DE = 12 - x - y$,$\because AB = AC$,$AD \perp BC$,$\therefore BD = DC = 12 - x - y$①,$\because FG = CG = 6$,$\therefore EG = FG - EF = 6 - y$②;$\because MG$是$Rt\triangle MFC$斜边上的中线,$\therefore \angle FGM = \angle BCM = \angle ACB$;$\because AB = AC$,$\therefore \angle B = \angle ACB$,$\therefore \angle FGM = \angle B$,又$ME \perp BG$,$BE = EG$,由①、②得$12 - 2x - y = 6 - y$,$\therefore x = 3$. 故答案为$3$.
14. 如图 8 - 13,图①是一块边长为 1,周长记为$P_1$的正三角形纸板,沿图①的底边剪去一块边长为$\frac{1}{2}$的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的$\frac{1}{2}$)后,得到图③,④…记第$n(n\geq 3)$块纸板的周长为$P_n$,则$P_n - P_{n - 1} = $

$(\frac{1}{2})^{n - 1}$
.(用含$n$的代数式表示)
答案:
14.$(\frac{1}{2})^{n - 1}$ 提示:由图可知,依次剪下小正三角形纸板过程中,原图形的两边分别是为$\frac{1}{4}$和$\frac{1}{2}$始终不变,当$n \geq 3$时,每一个纸板周长大于前一个纸板周长,如$P_3 - P_2 = (\frac{1}{4})^2$,$P_4 - P_3 = (\frac{1}{2})^3$,由此类推,$P_n - P_{n - 1} = (\frac{1}{2})^{n - 1}$.
查看更多完整答案,请扫码查看