14. 计算:
(1) $(x^{3}-2x^{2}+1)\cdot (-3x)$;(2) $(2xy^{2})^{3}-4xy(2x^{2}y^{5}-xy)$;
(3) $(-2a^{3})^{2}\cdot (\frac{1}{3}a^{2})^{3}$;(4) $7a\cdot (-ab)^{2}\cdot (-a^{2}b)$.
(1) $(x^{3}-2x^{2}+1)\cdot (-3x)$;(2) $(2xy^{2})^{3}-4xy(2x^{2}y^{5}-xy)$;
(3) $(-2a^{3})^{2}\cdot (\frac{1}{3}a^{2})^{3}$;(4) $7a\cdot (-ab)^{2}\cdot (-a^{2}b)$.
答案:
(1)解:原式$=x^{3}\cdot (-3x)-2x^{2}\cdot (-3x)+1\cdot (-3x)$
$=-3x^{4}+6x^{3}-3x$
(2)解:原式$=8x^{3}y^{6}-4xy\cdot 2x^{2}y^{5}+4xy\cdot xy$
$=8x^{3}y^{6}-8x^{3}y^{6}+4x^{2}y^{2}$
$=4x^{2}y^{2}$
(3)解:原式$=4a^{6}\cdot \frac{1}{27}a^{6}$
$=\frac{4}{27}a^{12}$
(4)解:原式$=7a\cdot a^{2}b^{2}\cdot (-a^{2}b)$
$=7a^{3}b^{2}\cdot (-a^{2}b)$
$=-7a^{5}b^{3}$
(1)解:原式$=x^{3}\cdot (-3x)-2x^{2}\cdot (-3x)+1\cdot (-3x)$
$=-3x^{4}+6x^{3}-3x$
(2)解:原式$=8x^{3}y^{6}-4xy\cdot 2x^{2}y^{5}+4xy\cdot xy$
$=8x^{3}y^{6}-8x^{3}y^{6}+4x^{2}y^{2}$
$=4x^{2}y^{2}$
(3)解:原式$=4a^{6}\cdot \frac{1}{27}a^{6}$
$=\frac{4}{27}a^{12}$
(4)解:原式$=7a\cdot a^{2}b^{2}\cdot (-a^{2}b)$
$=7a^{3}b^{2}\cdot (-a^{2}b)$
$=-7a^{5}b^{3}$
15. 计算:
(1) $2(-x^{n}y)^{3}\cdot (-0.5x^{n}y^{2})^{3}+0.75(x^{2n}\cdot y^{3})^{3}$;(2) $\frac{1}{3}a^{n+2}b^{n - 1}\cdot (-\frac{3}{2}a^{1 - n}b^{n - 2})^{2}$.
(1) $2(-x^{n}y)^{3}\cdot (-0.5x^{n}y^{2})^{3}+0.75(x^{2n}\cdot y^{3})^{3}$;(2) $\frac{1}{3}a^{n+2}b^{n - 1}\cdot (-\frac{3}{2}a^{1 - n}b^{n - 2})^{2}$.
答案:
(1)解:原式$=2(-x^{3n}y^{3})\cdot (-\frac{1}{8}x^{3n}y^{6}) + 0.75x^{6n}y^{9}$
$=2×\frac{1}{8}x^{6n}y^{9} + \frac{3}{4}x^{6n}y^{9}$
$=\frac{1}{4}x^{6n}y^{9} + \frac{3}{4}x^{6n}y^{9}$
$=x^{6n}y^{9}$
(2)解:原式$=\frac{1}{3}a^{n+2}b^{n - 1}\cdot (\frac{9}{4}a^{2 - 2n}b^{2n - 4})$
$=\frac{1}{3}×\frac{9}{4}a^{(n+2)+(2 - 2n)}b^{(n - 1)+(2n - 4)}$
$=\frac{3}{4}a^{4 - n}b^{3n - 5}$
(1)解:原式$=2(-x^{3n}y^{3})\cdot (-\frac{1}{8}x^{3n}y^{6}) + 0.75x^{6n}y^{9}$
$=2×\frac{1}{8}x^{6n}y^{9} + \frac{3}{4}x^{6n}y^{9}$
$=\frac{1}{4}x^{6n}y^{9} + \frac{3}{4}x^{6n}y^{9}$
$=x^{6n}y^{9}$
(2)解:原式$=\frac{1}{3}a^{n+2}b^{n - 1}\cdot (\frac{9}{4}a^{2 - 2n}b^{2n - 4})$
$=\frac{1}{3}×\frac{9}{4}a^{(n+2)+(2 - 2n)}b^{(n - 1)+(2n - 4)}$
$=\frac{3}{4}a^{4 - n}b^{3n - 5}$
16. 已知 $x = 4$,$y = -\frac{1}{8}$,求代数式 $\frac{1}{7}xy^{2}\cdot 14(xy)^{2}\cdot \frac{1}{4}x^{5}$ 的值.
答案:
解:原式$=\frac{1}{7}xy^{2}\cdot 14x^{2}y^{2}\cdot \frac{1}{4}x^{5}$
$=(\frac{1}{7}×14×\frac{1}{4})\cdot(x\cdot x^{2}\cdot x^{5})\cdot(y^{2}\cdot y^{2})$
$=\frac{1}{2}x^{8}y^{4}$
当$x = 4$,$y=-\frac{1}{8}$时,
$x^{8}=(4)^{8}=(2^{2})^{8}=2^{16}$,$y^{4}=(-\frac{1}{8})^{4}=(\frac{1}{2^{3}})^{4}=2^{-12}$
原式$=\frac{1}{2}×2^{16}×2^{-12}=\frac{1}{2}×2^{4}=\frac{1}{2}×16=8$
答:代数式的值为$8$。
$=(\frac{1}{7}×14×\frac{1}{4})\cdot(x\cdot x^{2}\cdot x^{5})\cdot(y^{2}\cdot y^{2})$
$=\frac{1}{2}x^{8}y^{4}$
当$x = 4$,$y=-\frac{1}{8}$时,
$x^{8}=(4)^{8}=(2^{2})^{8}=2^{16}$,$y^{4}=(-\frac{1}{8})^{4}=(\frac{1}{2^{3}})^{4}=2^{-12}$
原式$=\frac{1}{2}×2^{16}×2^{-12}=\frac{1}{2}×2^{4}=\frac{1}{2}×16=8$
答:代数式的值为$8$。
计算:$-(x^{3}-x + 1)\cdot (-x)^{n}-(-x)^{n + 1}\cdot (x^{2}-1)$. ($n$ 为正整数)
答案:
解:
$\begin{aligned}&-(x^{3}-x + 1)\cdot (-x)^{n}-(-x)^{n + 1}\cdot (x^{2}-1)\\=&-(x^{3}-x + 1)\cdot (-x)^{n}+(-x)^{n}\cdot x\cdot (x^{2}-1)\\=&(-x)^{n}\left[-(x^{3}-x + 1)+x(x^{2}-1)\right]\\=&(-x)^{n}\left[-x^{3}+x - 1 + x^{3}-x\right]\\=&(-x)^{n}(-1)\\=&-(-x)^{n}\end{aligned}$
当$n$为奇数时,原式$=-(-x^{n})=x^{n}$;当$n$为偶数时,原式$=-x^{n}$。
综上,当$n$为奇数时,结果为$x^{n}$;当$n$为偶数时,结果为$-x^{n}$。
$\begin{aligned}&-(x^{3}-x + 1)\cdot (-x)^{n}-(-x)^{n + 1}\cdot (x^{2}-1)\\=&-(x^{3}-x + 1)\cdot (-x)^{n}+(-x)^{n}\cdot x\cdot (x^{2}-1)\\=&(-x)^{n}\left[-(x^{3}-x + 1)+x(x^{2}-1)\right]\\=&(-x)^{n}\left[-x^{3}+x - 1 + x^{3}-x\right]\\=&(-x)^{n}(-1)\\=&-(-x)^{n}\end{aligned}$
当$n$为奇数时,原式$=-(-x^{n})=x^{n}$;当$n$为偶数时,原式$=-x^{n}$。
综上,当$n$为奇数时,结果为$x^{n}$;当$n$为偶数时,结果为$-x^{n}$。
查看更多完整答案,请扫码查看