1. 某反比例函数的图象过点$(-2,1)$,则此反比例函数解析式为(
A. $y=\frac{2}{x}$
B. $y=-\frac{2}{x}$
C. $y=\frac{1}{2x}$
D. $y=-\frac{1}{2x}$
B
)A. $y=\frac{2}{x}$
B. $y=-\frac{2}{x}$
C. $y=\frac{1}{2x}$
D. $y=-\frac{1}{2x}$
答案:
B
2. 下列各点中,在反比例函数$y=\frac{8}{x}$图象上的是(
A. $(-1,8)$
B. $(-2,4)$
C. $(1,7)$
D. $(2,4)$
D
)A. $(-1,8)$
B. $(-2,4)$
C. $(1,7)$
D. $(2,4)$
答案:
D
3. 下列各点中在反比例函数$y=-\frac{1}{x}$的图象上的是(
A. $(-2,1)$
B. $(1,-2)$
C. $(-\frac{1}{2},1)$
D. $(\frac{1}{2},-2)$
D
)A. $(-2,1)$
B. $(1,-2)$
C. $(-\frac{1}{2},1)$
D. $(\frac{1}{2},-2)$
答案:
D
4. 已知点$A(-1,y_{1})$,$B(2,y_{2})$,$C(4,y_{3})$都在反比例函数$y=-\frac{5}{x}$的图象上,则下列结论中正确的是(
A. $y_{1}<y_{2}<y_{3}$
B. $y_{2}<y_{3}<y_{1}$
C. $y_{1}<y_{3}<y_{2}$
D. $y_{3}<y_{2}<y_{1}$
B
)A. $y_{1}<y_{2}<y_{3}$
B. $y_{2}<y_{3}<y_{1}$
C. $y_{1}<y_{3}<y_{2}$
D. $y_{3}<y_{2}<y_{1}$
答案:
B
5. 已知点$(-1,y_{1})$,$(-2,y_{2})$,$(3,y_{3})$在反比例函数$y=\frac{k}{x}(k<0)$的图象上,下列结论正确的是(
A. $y_{1}>y_{3}>y_{2}$
B. $y_{1}>y_{2}>y_{3}$
C. $y_{3}>y_{1}>y_{2}$
D. $y_{3}>y_{2}>y_{1}$
B
)A. $y_{1}>y_{3}>y_{2}$
B. $y_{1}>y_{2}>y_{3}$
C. $y_{3}>y_{1}>y_{2}$
D. $y_{3}>y_{2}>y_{1}$
答案:
B
6. 已知一次函数$y_{1}=k_{1}x-b$与反比例函数$y_{2}=\frac{k_{2}}{x}$在同一平面直角坐标系中的图象如图所示,则当$k_{1}x<\frac{k_{2}}{x}+b$时,$x$的取值范围是(

A. $x<-1$或$0<x<3$
B. $-1<x<0$或$x>3$
C. $-3<x<0$或$x>1$
D. $x>3$
B
)A. $x<-1$或$0<x<3$
B. $-1<x<0$或$x>3$
C. $-3<x<0$或$x>1$
D. $x>3$
答案:
B
7. 已知某品牌显示器的使用寿命为定值。这种显示器可工作的天数$y$与平均每天工作的时长$x$是反比例函数关系,图象如图所示,如果这种显示器至少要用2000天,那么显示器平均每天工作的时长$x$应控制在(

A. $0<x\leqslant10$
B. $10\leqslant x\leqslant24$
C. $0<x\leqslant20$
D. $20\leqslant x\leqslant24$
A
)A. $0<x\leqslant10$
B. $10\leqslant x\leqslant24$
C. $0<x\leqslant20$
D. $20\leqslant x\leqslant24$
答案:
A
8. 如图,点$P$是反比例函数$y=\frac{6}{x}$图象上的一点,则矩形$PEOF$的面积是

6
。
答案:
6
9. 反比例函数$y=\frac{k}{x}$的图象如图所示,点$A$是该函数图象上一点,$AB\perp x$轴,垂足是$B$,若$S_{\triangle AOB}=1$,则$k$的值为
-2
。
答案:
-2
10. 如图,一辆汽车匀速通过某段公路,所需时间$t(h)$与行驶速度$v(km/h)$的函数图象为双曲线的一段,若这段公路行驶速度不得超过80km/h,则该汽车通过这段公路最少需要

$\frac{1}{2}$
h。
答案:
$\frac{1}{2}$
查看更多完整答案,请扫码查看