2025年学习质量监测数学选择性必修第二册人教A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习质量监测数学选择性必修第二册人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
4. 已知等比数列$\{ a_{n}\}$的前$n$项和$S_{n}=2^{n}-1(n\in N^{*})$,求$a_{1}^{2}+a_{2}^{2}+\cdots +a_{n}^{2}$.
答案:
解:
∵$S_{n}=2^{n}-1(n\in N^{*})$,
∴当n≥2时,$S_{n - 1} = 2^{n - 1} - 1$, $a_{n} = S_{n} - S_{n - 1} = 2^{n - 1}$,
当n=1时,a1=S1=1也满足上式,
∴$a_{n} = 2^{n - 1}$,
∴$a_{n}^{2} = 4^{n - 1}$,
∴$a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2} =1 + 4 + 4^{2} + \cdots + 4^{n - 1} = \frac{1 \times(1 - 4^{n})}{1 - 4} = \frac{1}{3}(4^{n} - 1)$
∵$S_{n}=2^{n}-1(n\in N^{*})$,
∴当n≥2时,$S_{n - 1} = 2^{n - 1} - 1$, $a_{n} = S_{n} - S_{n - 1} = 2^{n - 1}$,
当n=1时,a1=S1=1也满足上式,
∴$a_{n} = 2^{n - 1}$,
∴$a_{n}^{2} = 4^{n - 1}$,
∴$a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2} =1 + 4 + 4^{2} + \cdots + 4^{n - 1} = \frac{1 \times(1 - 4^{n})}{1 - 4} = \frac{1}{3}(4^{n} - 1)$
5. 已知等差数列$\{ a_{n}\}$,正项等比数列$\{ b_{n}\}$满足$a_{1}=b_{1}=1$,$b_{3}=a_{4}$,$b_{2}+b_{3}=a_{6}$.
(1)求数列$\{ a_{n}\}$与$\{ b_{n}\}$的通项公式;
(2)求数列$\{\frac{a_{n}+2}{b_{n}\cdot a_{n}\cdot a_{n + 1}}\}$的前$n$项和$S_{n}$.
(1)求数列$\{ a_{n}\}$与$\{ b_{n}\}$的通项公式;
(2)求数列$\{\frac{a_{n}+2}{b_{n}\cdot a_{n}\cdot a_{n + 1}}\}$的前$n$项和$S_{n}$.
答案:
解:
(1)依题意可得$\{ a_{n}\}$ 是等差数列,$\{ b_{n}\}$是正项等比数列.
设等差数列的公差为d,等比数列的公比为q,q>0,
则$\begin{cases}q²=1+3d\\ q+q²=1+5d\end{cases}$
消去d可得2q²−3q−2=0,
解得q=2或q=−$\frac{1}{2}$(舍去),
∴可得d=1,
∴$a_{n}$=1+n−1=n, $b_{n} = 2^{n - 1}$,
(2)由
(1)可知 $\frac{a_{n} + 2}{b_{n}\cdot a_{n + 1}} = \frac{n + 2}{n \times 2^{n - 1}\times(n + 1)}=\frac{1}{n \times 2^{n - 2}}-\frac{1}{(n + 1)\times 2^{n - 1}}$
∴ $S_{n} = \frac{1}{1 \times 2^{ - 1}} - \frac{1}{2 \times 2^{0}} + \frac{1}{2 \times 2^{0}} - \frac{1}{3 \times 2} + \cdots +\frac{1}{n \times 2^{n - 2}} - \frac{1}{(n + 1)\times 2^{n - 1}} = 2 - \frac{1}{(n + 1)2^{n - 1}}$.
(1)依题意可得$\{ a_{n}\}$ 是等差数列,$\{ b_{n}\}$是正项等比数列.
设等差数列的公差为d,等比数列的公比为q,q>0,
则$\begin{cases}q²=1+3d\\ q+q²=1+5d\end{cases}$
消去d可得2q²−3q−2=0,
解得q=2或q=−$\frac{1}{2}$(舍去),
∴可得d=1,
∴$a_{n}$=1+n−1=n, $b_{n} = 2^{n - 1}$,
(2)由
(1)可知 $\frac{a_{n} + 2}{b_{n}\cdot a_{n + 1}} = \frac{n + 2}{n \times 2^{n - 1}\times(n + 1)}=\frac{1}{n \times 2^{n - 2}}-\frac{1}{(n + 1)\times 2^{n - 1}}$
∴ $S_{n} = \frac{1}{1 \times 2^{ - 1}} - \frac{1}{2 \times 2^{0}} + \frac{1}{2 \times 2^{0}} - \frac{1}{3 \times 2} + \cdots +\frac{1}{n \times 2^{n - 2}} - \frac{1}{(n + 1)\times 2^{n - 1}} = 2 - \frac{1}{(n + 1)2^{n - 1}}$.
6. 设$\{ a_{n}\}$是等差数列,$\{ b_{n}\}$是等比数列,且$a_{1}=b_{1}=a_{2}-b_{2}=a_{3}-b_{3}=1$.
(1)求$\{ a_{n}\}$与$\{ b_{n}\}$的通项公式;
(2)设$\{ a_{n}\}$的前$n$项和为$S_{n}$,求证:$(S_{n + 1}+a_{n + 1})b_{n}=S_{n + 1}b_{n + 1}-S_{n}b_{n}$;
(3)求\sum_ {k = 1}^{2n}[a_{k + 1}-(-1)^{k}a_{k}]b_{k}.
(1)求$\{ a_{n}\}$与$\{ b_{n}\}$的通项公式;
(2)设$\{ a_{n}\}$的前$n$项和为$S_{n}$,求证:$(S_{n + 1}+a_{n + 1})b_{n}=S_{n + 1}b_{n + 1}-S_{n}b_{n}$;
(3)求\sum_ {k = 1}^{2n}[a_{k + 1}-(-1)^{k}a_{k}]b_{k}.
答案:
(1)解:设$\{ a_{n}\}$的公差为d,$\{ b_{n}\}$的公比为q, 则$a_{n} = 1 + (n - 1)d $, $b_{n} = q^{n - 1}$,由$a_{2} - b_{2} = a_{3} - b_{3} = 1$可得$\begin{cases}1+d-q=1\\ 1+2d-q²=1\end{cases}$ ⇒ d=q=2 (d=q=0舍去)
∴$a_{n} = 2 n - 1$,$b_{n} = 2^{n - 1}$.
(2)证明:$\because b_{n + 1} = 2 b_{n}\neq 0$,
∴要证$(S_{n + 1} + a_{n + 1})b_{n} = S_{n + 1}b_{n + 1} - S_{n}b_{n}$
即证$S_{n + 1} + a_{n + 1})b_{n} = S_{n + 1}\cdot 2 b_{n} - S_{n}b_{n}$,
即证$S_{n + 1} + a_{n + 1} = 2 S_{n + 1} - S_{n}$,
即证$a_{n + 1} = S_{n + 1} - S_{n}$,
而$a_{n + 1} = S_{n + 1} - S_{n}$显然成立,
$\therefore(S_{n + 1} + a_{n + 1})b_{n} = S_{n + 1}b_{n + 1} - S_{n}b_{n}$.
(3)解:$\because[a_{2 k} - ( - 1)^{2 k - 1}a_{2 k - 1}] + [a_{2 k + 1} -( - 1)^{2 k}a_{2 k}]b_{2 k} = (4 k - 1 + 4 k - 3)\times 2^{2 k - 2} + [4 k +1 - (4 k - 1)]\times 2^{2 k - 1} = 2 k \times 4^{k}$ ,
$[a_{k + 1} - ( - 1)^{k}a_{k}]b_{k}$= ${[a_{2 k} - ( - 1)^{2 k - 1}a_{2 k - 1}] + [a_{2 k + 1} -( - 1)^{2 k}a_{2 k}]b_{2 k}}$=$2 k \times 4^{k}$
设$T_{n} = \sum_{k = 1}^{n}2 k \times 4^{k}$,
则$T_{n} = 2 \times 4 + 4 \times 4^{2} + 6 \times 4^{3} + \cdots + 2 n \times 4^{n}$,
则 4$T_{n} = 2 \times 4^{2} + 4 \times 4^{3} + 6 \times 4^{4} + \cdots + 2 n \times 4^{n + 1}$,作差得$- 3 T_{n} = 2(4 + 4^{2} + 4^{3} + 4^{4} + \cdots + 4^{n}) - 2 n 4^{n + 1}$=$\frac{2 \times 4(1 - 4^{n})}{1 - 4} - 2 n \times 4^{n + 1} = \frac{(2 - 6 n)4^{n + 1} - 8}{3}$,$\therefore T_{n} = \frac{(6 n - 2)4^{n + 1} + 8}{9}$,
$[a_{k + 1} - ( - 1)^{k}a_{k}]b_{k}=\frac{(6 n - 2)4^{n + 1} + 8}{9}$
(1)解:设$\{ a_{n}\}$的公差为d,$\{ b_{n}\}$的公比为q, 则$a_{n} = 1 + (n - 1)d $, $b_{n} = q^{n - 1}$,由$a_{2} - b_{2} = a_{3} - b_{3} = 1$可得$\begin{cases}1+d-q=1\\ 1+2d-q²=1\end{cases}$ ⇒ d=q=2 (d=q=0舍去)
∴$a_{n} = 2 n - 1$,$b_{n} = 2^{n - 1}$.
(2)证明:$\because b_{n + 1} = 2 b_{n}\neq 0$,
∴要证$(S_{n + 1} + a_{n + 1})b_{n} = S_{n + 1}b_{n + 1} - S_{n}b_{n}$
即证$S_{n + 1} + a_{n + 1})b_{n} = S_{n + 1}\cdot 2 b_{n} - S_{n}b_{n}$,
即证$S_{n + 1} + a_{n + 1} = 2 S_{n + 1} - S_{n}$,
即证$a_{n + 1} = S_{n + 1} - S_{n}$,
而$a_{n + 1} = S_{n + 1} - S_{n}$显然成立,
$\therefore(S_{n + 1} + a_{n + 1})b_{n} = S_{n + 1}b_{n + 1} - S_{n}b_{n}$.
(3)解:$\because[a_{2 k} - ( - 1)^{2 k - 1}a_{2 k - 1}] + [a_{2 k + 1} -( - 1)^{2 k}a_{2 k}]b_{2 k} = (4 k - 1 + 4 k - 3)\times 2^{2 k - 2} + [4 k +1 - (4 k - 1)]\times 2^{2 k - 1} = 2 k \times 4^{k}$ ,
$[a_{k + 1} - ( - 1)^{k}a_{k}]b_{k}$= ${[a_{2 k} - ( - 1)^{2 k - 1}a_{2 k - 1}] + [a_{2 k + 1} -( - 1)^{2 k}a_{2 k}]b_{2 k}}$=$2 k \times 4^{k}$
设$T_{n} = \sum_{k = 1}^{n}2 k \times 4^{k}$,
则$T_{n} = 2 \times 4 + 4 \times 4^{2} + 6 \times 4^{3} + \cdots + 2 n \times 4^{n}$,
则 4$T_{n} = 2 \times 4^{2} + 4 \times 4^{3} + 6 \times 4^{4} + \cdots + 2 n \times 4^{n + 1}$,作差得$- 3 T_{n} = 2(4 + 4^{2} + 4^{3} + 4^{4} + \cdots + 4^{n}) - 2 n 4^{n + 1}$=$\frac{2 \times 4(1 - 4^{n})}{1 - 4} - 2 n \times 4^{n + 1} = \frac{(2 - 6 n)4^{n + 1} - 8}{3}$,$\therefore T_{n} = \frac{(6 n - 2)4^{n + 1} + 8}{9}$,
$[a_{k + 1} - ( - 1)^{k}a_{k}]b_{k}=\frac{(6 n - 2)4^{n + 1} + 8}{9}$
查看更多完整答案,请扫码查看