2025年学习质量监测数学选择性必修第二册人教A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习质量监测数学选择性必修第二册人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
5. 记$S_{n}$为正项数列$\{ a_{n}\}$的前$n$项和,已知$a_{2}=3a_{1}$,且数列$\{\sqrt{S_{n}}\}$是等差数列,求证:$\{ a_{n}\}$是等差数列.
答案:
证明:
∵数列$\{\sqrt{S_{n}}\}$是等差数列,设公差为$d=\sqrt{S_{2}}-\sqrt{S_{1}}=\sqrt{a_{1}+a_{2}}-\sqrt{a_{1}}=\sqrt{a_{1}}$,
∴$\sqrt{S_{n}}=\sqrt{a_{1}}+(n - 1)\sqrt{a_{1}}=n\sqrt{a_{1}}(n\in\mathbf{N}^{*})$,即$S_{n}=a_{1}n^{2}(n\in\mathbf{N}^{*})$.
当$n\geq2$时,$a_{n}=S_{n}-S_{n - 1}=a_{1}n^{2}-a_{1}(n - 1)^{2}=2a_{1}n - a_{1}$;
当$n = 1$时,$2a_{1}\times1 - a_{1}=a_{1}$,满足$a_{n}=2a_{1}n - a_{1}$.
∴$\{ a_{n}\}$的通项公式为$a_{n}=2a_{1}n - a_{1}(n\in\mathbf{N}^{*})$,
∴$a_{n}-a_{n - 1}=(2a_{1}n - a_{1})-[2a_{1}(n - 1)-a_{1}]=2a_{1}$,
∴数列$\{ a_{n}\}$是等差数列.
∵数列$\{\sqrt{S_{n}}\}$是等差数列,设公差为$d=\sqrt{S_{2}}-\sqrt{S_{1}}=\sqrt{a_{1}+a_{2}}-\sqrt{a_{1}}=\sqrt{a_{1}}$,
∴$\sqrt{S_{n}}=\sqrt{a_{1}}+(n - 1)\sqrt{a_{1}}=n\sqrt{a_{1}}(n\in\mathbf{N}^{*})$,即$S_{n}=a_{1}n^{2}(n\in\mathbf{N}^{*})$.
当$n\geq2$时,$a_{n}=S_{n}-S_{n - 1}=a_{1}n^{2}-a_{1}(n - 1)^{2}=2a_{1}n - a_{1}$;
当$n = 1$时,$2a_{1}\times1 - a_{1}=a_{1}$,满足$a_{n}=2a_{1}n - a_{1}$.
∴$\{ a_{n}\}$的通项公式为$a_{n}=2a_{1}n - a_{1}(n\in\mathbf{N}^{*})$,
∴$a_{n}-a_{n - 1}=(2a_{1}n - a_{1})-[2a_{1}(n - 1)-a_{1}]=2a_{1}$,
∴数列$\{ a_{n}\}$是等差数列.
6. 已知数列$\{ a_{n}\}$满足$a_{1}=0$,$a_{2}=2$,$a_{2n + 2}-a_{2n}=2$,$a_{2n + 1}-a_{2n - 1}=1(n\in\mathbf{N}^{*})$,求$\{ a_{n}\}$的通项公式.
答案:
解:当$n$为奇数时,设$n = 2m - 1$,则$a_{n}=a_{2m - 1}=0+(m - 1)\times1=m - 1=\frac{n - 1}{2}$;
当$n$为偶数时,设$n = 2m$,则$a_{n}=a_{2m}=2+(m - 1)\times2=2m=n$.
∴$a_{n}=\begin{cases}\frac{n - 1}{2},n为奇数\\n,n为偶数\end{cases}$
当$n$为偶数时,设$n = 2m$,则$a_{n}=a_{2m}=2+(m - 1)\times2=2m=n$.
∴$a_{n}=\begin{cases}\frac{n - 1}{2},n为奇数\\n,n为偶数\end{cases}$
查看更多完整答案,请扫码查看