2025年学习质量监测数学选择性必修第二册人教A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习质量监测数学选择性必修第二册人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
5. 已知数列{aₙ}满足a₁ = 1,$a_{n + 1}=\begin{cases}a_{n}+1,n为奇数,\\a_{n}+2,n为偶数.\end{cases}$
(1)记bₙ = a₂ₙ,写出b₁,b₂,并求数列{bₙ}的通项公式;
(2)求{aₙ}的前20项和.
(1)记bₙ = a₂ₙ,写出b₁,b₂,并求数列{bₙ}的通项公式;
(2)求{aₙ}的前20项和.
答案:
解:
(1)由题设可得$b_{1}=a_{2}=a_{1}+1 = 2$,$b_{2}=a_{4}=a_{3}+1=a_{2}+2 + 1 = 5$。
$\because a_{2k + 2}=a_{2k+1}+1$,$a_{2k + 1}=a_{2k}+2(k\in\mathbf{N}^{*})$,
$\therefore a_{2k + 2}=a_{2k}+3$,$\therefore b_{n + 1}=b_{n}+3$,即$b_{n + 1}-b_{n}=3$,
$\therefore\{b_{n}\}$为等差数列,$\therefore b_{n}=2+(n - 1)\times3=3n - 1$。
(2)设$\{a_{n}\}$的前$20$项和为$S_{20}$,则$S_{20}=a_{1}+a_{2}+a_{3}+\cdots+a_{20}$。
$\because a_{1}=a_{2}-1$,$a_{3}=a_{4}-1$,$\cdots$,$a_{19}=a_{20}-1$,
$\therefore S_{20}=2(a_{2}+a_{4}+\cdots+a_{18}+a_{20})-10$
$=2(b_{1}+b_{2}+\cdots+b_{9}+b_{10})-10$
$=2\times(10\times2+\frac{10\times9}{2}\times3)-10 = 300$。
(1)由题设可得$b_{1}=a_{2}=a_{1}+1 = 2$,$b_{2}=a_{4}=a_{3}+1=a_{2}+2 + 1 = 5$。
$\because a_{2k + 2}=a_{2k+1}+1$,$a_{2k + 1}=a_{2k}+2(k\in\mathbf{N}^{*})$,
$\therefore a_{2k + 2}=a_{2k}+3$,$\therefore b_{n + 1}=b_{n}+3$,即$b_{n + 1}-b_{n}=3$,
$\therefore\{b_{n}\}$为等差数列,$\therefore b_{n}=2+(n - 1)\times3=3n - 1$。
(2)设$\{a_{n}\}$的前$20$项和为$S_{20}$,则$S_{20}=a_{1}+a_{2}+a_{3}+\cdots+a_{20}$。
$\because a_{1}=a_{2}-1$,$a_{3}=a_{4}-1$,$\cdots$,$a_{19}=a_{20}-1$,
$\therefore S_{20}=2(a_{2}+a_{4}+\cdots+a_{18}+a_{20})-10$
$=2(b_{1}+b_{2}+\cdots+b_{9}+b_{10})-10$
$=2\times(10\times2+\frac{10\times9}{2}\times3)-10 = 300$。
6. 设等差数列{aₙ}的公差为d,且d > 1. 令$b_{n}=\frac{n^{2}+n}{a_{n}}$,记Sₙ,Tₙ分别为数列{aₙ},{bₙ}的前n项和.
(1)若3a₂ = 3a₁ + a₃,S₃ + T₃ = 21,求{aₙ}的通项公式;
(2)若{bₙ}为等差数列,且S₉₉ - T₉₉ = 99,求d.
(1)若3a₂ = 3a₁ + a₃,S₃ + T₃ = 21,求{aₙ}的通项公式;
(2)若{bₙ}为等差数列,且S₉₉ - T₉₉ = 99,求d.
答案:
解:
(1)$\because 3a_{2}=3a_{1}+a_{3}$,$\therefore 3d=a_{1}+2d$,解得$a_{1}=d$,$\therefore S_{3}=3a_{2}=3(a_{1}+d)=6d$。
又$T_{3}=b_{1}+b_{2}+b_{3}=\frac{2}{d}+\frac{6}{2d}+\frac{12}{3d}=\frac{9}{d}$,$\therefore S_{3}+T_{3}=6d+\frac{9}{d}=21$,即$2d^{2}-7d + 3 = 0$,解得$d = 3$或$d=\frac{1}{2}$(舍去),$\therefore a_{n}=a_{1}+(n - 1)\cdot d=3n$。
(2)$\because\{b_{n}\}$为等差数列,$\therefore 2b_{2}=b_{1}+b_{3}$,即$\frac{12}{a_{2}}=\frac{2}{a_{1}}+\frac{12}{a_{3}}$,
$\therefore 6(\frac{1}{a_{2}}-\frac{1}{a_{3}})=\frac{6d}{a_{2}a_{3}}=\frac{1}{a_{1}}$,即$a_{1}^{2}-3a_{1}d + 2d^{2}=0$,
解得$a_{1}=d$或$a_{1}=2d$。
$\because d>1$,$\therefore a_{n}>0$。
$\because S_{99}-T_{99}=99$,由等差数列的性质知,$99a_{50}-99b_{50}=99$,即$a_{50}-b_{50}=1$,
$\therefore a_{50}-\frac{2550}{a_{50}}=1$,即$a_{50}^{2}-a_{50}-2550 = 0$,解得$a_{50}=51$或$a_{50}=-50$(舍去)。
当$a_{1}=2d$时,$a_{50}=a_{1}+49d=51d=51$,解得$d = 1$,与$d>1$矛盾,舍去;
当$a_{1}=d$时,$a_{50}=a_{1}+49d=50d=51$,解得$d=\frac{51}{50}$,符合题意。
综上,$d=\frac{51}{50}$
(1)$\because 3a_{2}=3a_{1}+a_{3}$,$\therefore 3d=a_{1}+2d$,解得$a_{1}=d$,$\therefore S_{3}=3a_{2}=3(a_{1}+d)=6d$。
又$T_{3}=b_{1}+b_{2}+b_{3}=\frac{2}{d}+\frac{6}{2d}+\frac{12}{3d}=\frac{9}{d}$,$\therefore S_{3}+T_{3}=6d+\frac{9}{d}=21$,即$2d^{2}-7d + 3 = 0$,解得$d = 3$或$d=\frac{1}{2}$(舍去),$\therefore a_{n}=a_{1}+(n - 1)\cdot d=3n$。
(2)$\because\{b_{n}\}$为等差数列,$\therefore 2b_{2}=b_{1}+b_{3}$,即$\frac{12}{a_{2}}=\frac{2}{a_{1}}+\frac{12}{a_{3}}$,
$\therefore 6(\frac{1}{a_{2}}-\frac{1}{a_{3}})=\frac{6d}{a_{2}a_{3}}=\frac{1}{a_{1}}$,即$a_{1}^{2}-3a_{1}d + 2d^{2}=0$,
解得$a_{1}=d$或$a_{1}=2d$。
$\because d>1$,$\therefore a_{n}>0$。
$\because S_{99}-T_{99}=99$,由等差数列的性质知,$99a_{50}-99b_{50}=99$,即$a_{50}-b_{50}=1$,
$\therefore a_{50}-\frac{2550}{a_{50}}=1$,即$a_{50}^{2}-a_{50}-2550 = 0$,解得$a_{50}=51$或$a_{50}=-50$(舍去)。
当$a_{1}=2d$时,$a_{50}=a_{1}+49d=51d=51$,解得$d = 1$,与$d>1$矛盾,舍去;
当$a_{1}=d$时,$a_{50}=a_{1}+49d=50d=51$,解得$d=\frac{51}{50}$,符合题意。
综上,$d=\frac{51}{50}$
查看更多完整答案,请扫码查看