2025年学习质量监测数学选择性必修第二册人教A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习质量监测数学选择性必修第二册人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
5. 已知数列{aₙ}的前n项和为Sₙ,a₁ = 1,aₙ₊₁ = $\frac{1}{3}$Sₙ(n∈N*).
(1)求{aₙ}的通项公式;
(2)求a₂ + a₄ + a₆ + … + a₂ₙ.
(1)求{aₙ}的通项公式;
(2)求a₂ + a₄ + a₆ + … + a₂ₙ.
答案:
解:
(1)由$a_{n + 1}=\frac{1}{3}S_{n}$,得$a_{n}=\frac{1}{3}S_{n - 1}(n\geqslant2)$,两式相减得$a_{n + 1}=\frac{4}{3}a_{n}(n\geqslant2)$,
$\therefore a_{n}=\begin{cases}1, &n = 1\\\frac{1}{3}\times(\frac{4}{3})^{n - 2}, &n\geqslant2\end{cases}$.
(2)设$T_{n}=a_{2}+a_{4}+a_{6}+\cdots+a_{2n}$,则
$T_{n}=\frac{\frac{1}{3}[1-(\frac{4}{3})^{2n}]}{1-(\frac{4}{3})^{2}}=\frac{3}{7}[(\frac{4}{3})^{2n}-1](n\in\mathbf{N}^{*})$.
(1)由$a_{n + 1}=\frac{1}{3}S_{n}$,得$a_{n}=\frac{1}{3}S_{n - 1}(n\geqslant2)$,两式相减得$a_{n + 1}=\frac{4}{3}a_{n}(n\geqslant2)$,
$\therefore a_{n}=\begin{cases}1, &n = 1\\\frac{1}{3}\times(\frac{4}{3})^{n - 2}, &n\geqslant2\end{cases}$.
(2)设$T_{n}=a_{2}+a_{4}+a_{6}+\cdots+a_{2n}$,则
$T_{n}=\frac{\frac{1}{3}[1-(\frac{4}{3})^{2n}]}{1-(\frac{4}{3})^{2}}=\frac{3}{7}[(\frac{4}{3})^{2n}-1](n\in\mathbf{N}^{*})$.
6. 已知公比大于1的等比数列{aₙ}满足a₂ + a₄ = 20,a₃ = 8.
(1)求{aₙ}的通项公式;
(2)求a₁a₂ - a₂a₃ + … + (-1)ⁿ⁻¹aₙaₙ₊₁.
(1)求{aₙ}的通项公式;
(2)求a₁a₂ - a₂a₃ + … + (-1)ⁿ⁻¹aₙaₙ₊₁.
答案:
解:
(1)设等比数列$\{a_{n}\}$的公比为$q(q>1)$,
则$\begin{cases}a_{2}+a_{4}=a_{1}q+a_{1}q^{3}=20\\a_{3}=a_{1}q^{2}=8\end{cases}$,
整理可得$2q^{2}-5q + 2 = 0$.
$\because q>1$,$\therefore q = 2$,$a_{1}=2$,
$\therefore$数列$\{a_{n}\}$的通项公式为$a_{n}=2\times2^{n - 1}=2^{n}$.
(2)$\because(-1)^{n - 1}a_{n}a_{n + 1}=(-1)^{n - 1}\times2^{n}\times2^{n + 1}=(-1)^{n - 1}2^{2n + 1}$,
$\therefore a_{1}a_{2}-a_{2}a_{3}+\cdots+(-1)^{n - 1}a_{n}a_{n + 1}$
$=2^{3}-2^{5}+2^{7}-2^{9}+\cdots+(-1)^{n - 1}\times2^{2n + 1}$
$=\frac{2^{3}[1-(-2^{2})^{n}]}{1-(-2^{2})}=\frac{8}{5}-(-1)^{n}\frac{2^{2n + 3}}{5}$.
(1)设等比数列$\{a_{n}\}$的公比为$q(q>1)$,
则$\begin{cases}a_{2}+a_{4}=a_{1}q+a_{1}q^{3}=20\\a_{3}=a_{1}q^{2}=8\end{cases}$,
整理可得$2q^{2}-5q + 2 = 0$.
$\because q>1$,$\therefore q = 2$,$a_{1}=2$,
$\therefore$数列$\{a_{n}\}$的通项公式为$a_{n}=2\times2^{n - 1}=2^{n}$.
(2)$\because(-1)^{n - 1}a_{n}a_{n + 1}=(-1)^{n - 1}\times2^{n}\times2^{n + 1}=(-1)^{n - 1}2^{2n + 1}$,
$\therefore a_{1}a_{2}-a_{2}a_{3}+\cdots+(-1)^{n - 1}a_{n}a_{n + 1}$
$=2^{3}-2^{5}+2^{7}-2^{9}+\cdots+(-1)^{n - 1}\times2^{2n + 1}$
$=\frac{2^{3}[1-(-2^{2})^{n}]}{1-(-2^{2})}=\frac{8}{5}-(-1)^{n}\frac{2^{2n + 3}}{5}$.
查看更多完整答案,请扫码查看