2025年学习质量监测数学选择性必修第二册人教A版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学习质量监测数学选择性必修第二册人教A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



11. 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$a_{1}=\frac{5}{2}$,$2S_{n}=a_{n + 1}-4$,求$\{ a_{n}\}$的通项公式.
答案: 解:$\because2S_n = a_{n + 1}-4$,①
$\therefore$当$n\geqslant2$时,$2S_{n - 1}=a_n - 4$,②
① - ②,得$2a_n = a_{n + 1}-a_n$,即$\frac{a_{n + 1}}{a_n}=3$.
又$2S_1 = 2a_1 = a_2 - 4 = 5$,得$a_2 = 9$,
$\therefore a_n = a_2q^{n - 2}=9\times3^{n - 2}=3^n$.
又$a_1=\frac{5}{2}$不符合$a_n = 3^n$,
$\therefore a_n=\begin{cases}\frac{5}{2},n = 1,\\3^n,n\geqslant2.\end{cases}$
12. 已知数列$\{ a_{n}\}$的首项$a_{1}=2$.
(1)若$\{ a_{n}\}$为等差数列,公差$d = 2$,求证:数列$\{ 2^{a_{n}}\}$是等比数列;
(2)若$\{ a_{n}\}$是各项均为正数的等比数列,公比$q=\frac{1}{2}$,求证:数列$\{ \log_{2}a_{n}\}$是等差数列.
答案: 证明:
(1)已知等差数列$\{a_n\}$的首项$a_1 = 2$,公差$d = 2$,$\therefore a_n = 2+(n - 1)\times2 = 2n$. 设$b_n = 2^{a_n}$,则$b_n = 2^{2n}=4^n$,$\therefore\frac{b_{n + 1}}{b_n}=\frac{4^{n + 1}}{4^n}=4$. 又$b_1 = 4$,$\therefore$数列$\{2^{a_n}\}$是以4为首项,4为公比的等比数列.
(2)已知等比数列$\{a_n\}$的首项$a_1 = 2$,公比$q=\frac{1}{2}$,$\therefore a_n = 2\times(\frac{1}{2})^{n - 1}=(\frac{1}{2})^{n - 2}$.
设$c_n=\log_2a_n$,则$c_n=\log_2(\frac{1}{2})^{n - 2}=2 - n$,
$\therefore c_{n + 1}-c_n = 2-(n + 1)-(2 - n)= - 1$.
又$c_1 = 1$,$\therefore$数列$\{\log_2a_n\}$是以1为首项, - 1为公差的等差数列.
1. 已知在等比数列$\{ a_{n}\}$中,$a_{1}a_{3}a_{5}=64$,$a_{6}=32$,若$2a_{n}\geqslant8n + t$恒成立,则实数$t$的最大值为( ).
(A)$-16$
(B)16
(C)$-20$
(D)20
答案: A 【提示】设等比数列$\{a_n\}$的公比为$q$,由题意,得$\begin{cases}a_1\cdot a_1q^2\cdot a_1q^4 = 64,\\a_1q^5 = 32,\end{cases}$即$\begin{cases}a_1q^2 = 4,\\a_1q^5 = 32,\end{cases}$解得$\begin{cases}a_1 = 1,\\q = 2,\end{cases}$ $\therefore a_n = 2^{n - 1}$.
而$\forall n\in\mathbf{N}^*$,$2a_n\geqslant8n + t\Leftrightarrow t\leqslant2a_n - 8n$,令$b_n = 2^n - 8n$,则$b_{n + 1}-b_n = 2^n - 8$.
当$n\lt3$时,$b_{n + 1}-b_n\lt0$;
当$n = 3$时,$b_4 - b_3 = 0$;当$n\gt3$时,$b_{n + 1}-b_n\gt0$,
$\therefore b_1\gt b_2\gt b_3 = b_4\lt b_5\lt b_6\lt\cdots$,$\therefore(b_n)_{\min}=b_3 = b_4 = - 16$,$\therefore t\leqslant - 16$,即实数$t$的最大值为 - 16.
2. 定义$\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad - bc$,已知数列$\{ a_{n}\}$为等比数列,且$a_{3}=2$,$\begin{vmatrix}a_{5}&8\\8&a_{8}\end{vmatrix}=0$,则$a_{5}=$__________.
答案: 4
3. 已知数列$\{ a_{n}\}$的首项$a_{1}=2$,数列$\{ b_{n}\}$为等比数列,且$b_{n}=\frac{a_{n + 1}}{a_{n}}$. 若$b_{10}b_{11}=2$,则$a_{21}=$________.
答案: 2048
4. 已知数列$\{ a_{n}\}$满足$a_{1}=2$,$na_{n + 1}=3(n + 1)a_{n}$,设$b_{n}=\frac{a_{n}}{n}$.
(1)求$b_{1}$,$b_{2}$,$b_{3}$;
(2)判断数列$\{ b_{n}\}$是否为等比数列,并说明理由;
(3)求$\{ a_{n}\}$的通项公式.
答案: 解:
(1)由条件可得$a_{n + 1}=\frac{3(n + 1)}{n}a_n$,
将$n = 1$代入,得$a_2 = 6a_1$,而$a_1 = 2$,$\therefore a_2 = 12$;
将$n = 2$代入,得$a_3=\frac{9}{2}a_2$,$\therefore a_3 = 54$.
又$b_n=\frac{a_n}{n}$,从而$b_1 = 2$,$b_2 = 6$,$b_3 = 18$.
(2)数列$\{b_n\}$是首项为2,公比为3的等比数列,理由如下:
由条件可得$\frac{a_{n + 1}}{n + 1}=\frac{3a_n}{n}$,即$b_{n + 1}=3b_n$,
又$b_1 = 2$,$\therefore$数列$\{b_n\}$是首项为2,公比为3的等比数列.
(3)由
(2)可得$\frac{a_n}{n}=b_n = 2\times3^{n - 1}$,$\therefore a_n = 2n\times3^{n - 1}$.

查看更多完整答案,请扫码查看

关闭