精英家教网 > 练习册解析答案 > 新课程能力培养九年级数学北师大版 > 第175页解析答案
新课程能力培养九年级数学北师大版

新课程能力培养九年级数学北师大版

注:当前书本只展示部分页码答案,查看完整答案请下载作业精灵APP。练习册新课程能力培养九年级数学北师大版答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。

三、解答题(第14-16题各7分,第17-21题各8分,共61分)
14. 如图,四边形$ABCD$是菱形,对角线$AC$,$BD$相交于点$O$,$DH\perp AB$于点$H$.连接$OH$.求证:$\angle DHO=\angle DCO$.
答案:证明:四边形$ABCD$是菱形,$OD = OB$,$AB// CD$,$\angle DCO=\angle OAB$.$DH\perp AB$,$\triangle DHB$是直角三角形,$OH=\frac {1}{2}BD = OB$,$\angle OHB=\angle OBH$.$AB// CD$,$\angle OBH=\angle ODC$,$\angle DHO+\angle OHB = 90^{\circ}$,$\angle DCO+\angle ODC = 90^{\circ}$,所以$\angle DHO=\angle DCO$.
15. 如图,四边形$ABCD$是正方形,对角线$AC$,$BD$相交于点$O$,四边形$AEFC$是菱形,$EH\perp AC$,垂足为点$H$.求证:$EH=\frac {1}{2}FC$.
答案:证明:正方形$ABCD$,$AC\perp BD$,$OA = OC=\frac {1}{2}AC$,$\angle AOB = 90^{\circ}$.菱形$AEFC$,$AC = FC$,$EH\perp AC$,$EH = OB$(菱形高等于$OB$),$OB=\frac {1}{2}BD=\frac {1}{2}AC=\frac {1}{2}FC$,所以$EH=\frac {1}{2}FC$.
16. 如图,在矩形$ABCD$中,过对角线$AC$的中点$O$作$EF\perp AC$,分别与$AB$,$DC$交于点$E$,$F$,点$G$为$AE$的中点,若$\angle AOG = 30^{\circ}$,求证:$DC = 3OG$.
答案:证明:连接$CE$,$O$是$AC$中点,$EF\perp AC$,$EF$垂直平分$AC$,$AE = CE$.$G$是$AE$中点,$OG=\frac {1}{2}AE$(直角三角形斜边上中线).设$OG = x$,则$AE = 2x$,$\angle AOG = 30^{\circ}$,$\angle OAG = 60^{\circ}$,$\triangle AOE$是等边三角形,$AE = AO$,$AC = 2AO = 2AE = 4x$.在$Rt\triangle ABC$中,$\angle BAC = 60^{\circ}$,$AB = DC=\frac {1}{2}AC = 2x$,$DC = 2x = 2OG$(原解析有误,修正)
$EF\perp AC$,$O$为$AC$中点,$AE = CE$.$G$为$AE$中点,在$Rt\triangle AOE$中,$OG = AG = GE$,$\angle AOG = 30^{\circ}$,$\angle OAG = 30^{\circ}$,设$OG = x$,则$AG = x$,$AE = 2x$,$AO = AE\cos30^{\circ}=2x×\frac {\sqrt {3}}{2}=\sqrt {3}x$,$AC = 2AO = 2\sqrt {3}x$,$DC = AB = AC\cos30^{\circ}=2\sqrt {3}x×\frac {\sqrt {3}}{2}=3x$,所以$DC = 3OG$.
17. 如图,在$□ ABCD$中,对角线$AC$,$BD$交于点$O$,$E$是$BD$延长线上的点,且$\triangle ACE$是等边三角形.
(1)求证:四边形$ABCD$是菱形.
(2)若$\angle AED = 2\angle EAD$,求证:四边形$ABCD$是正方形.
答案:(1)证明:$□ ABCD$,$OA = OC$.$\triangle ACE$等边,$EO\perp AC$(三线合一),$BD\perp AC$,所以$□ ABCD$是菱形.
(2)证明:$\triangle ACE$等边,$\angle AEC = 60^{\circ}$,$EO\perp AC$,$\angle AEO = 30^{\circ}$.$\angle AED = 2\angle EAD$,设$\angle EAD = x$,则$\angle AED = 2x$,$x + 2x + 30^{\circ}=180^{\circ}$,$x = 50^{\circ}$(原解析有误,修正)
$\angle AEO = 30^{\circ}$,$\angle AED = 2\angle EAD$,设$\angle EAD = x$,则$\angle AED = 2x$,在$\triangle AED$中,$x + 2x + \angle ADE = 180^{\circ}$.$AD// BC$,$\angle ADE = \angle OBC$,菱形$ABCD$,$OB = OD$,$\angle OBC = \angle OCB$,$\angle AED = 2x = \angle OEC + \angle CED = 30^{\circ}+\angle CED$,解得$x = 15^{\circ}$,$\angle AED = 30^{\circ}$,$\angle ADO = 45^{\circ}$,$\angle ADC = 90^{\circ}$,所以菱形$ABCD$是正方形.
18. 如图,在四边形$ABCD$中,$E$是$AB$上的一点,$\triangle ADE$和$\triangle BCE$都是等边三角形,点$P$,$Q$,$M$,$N$分别为$AB$,$BC$,$CD$,$DA$的中点,试判断四边形$PQMN$为怎样的四边形,并证明你的结论.
菱形

证明:连接$AC$,$BD$.$P$,$Q$,$M$,$N$是中点,$PQ// AC$,$PQ=\frac {1}{2}AC$,$MN// AC$,$MN=\frac {1}{2}AC$,所以$PQ// MN$,$PQ = MN$,四边形$PQMN$是平行四边形.$\triangle ADE$和$\triangle BCE$等边,$AE = DE$,$CE = BE$,$\angle AED = \angle CEB = 60^{\circ}$,$\angle AEC = \angle DEB$,$\triangle AEC\cong\triangle DEB$,$AC = BD$,$PQ=\frac {1}{2}AC=\frac {1}{2}BD = PN$,所以平行四边形$PQMN$是菱形.
答案:菱形
证明:连接$AC$,$BD$.$P$,$Q$,$M$,$N$是中点,$PQ// AC$,$PQ=\frac {1}{2}AC$,$MN// AC$,$MN=\frac {1}{2}AC$,所以$PQ// MN$,$PQ = MN$,四边形$PQMN$是平行四边形.$\triangle ADE$和$\triangle BCE$等边,$AE = DE$,$CE = BE$,$\angle AED = \angle CEB = 60^{\circ}$,$\angle AEC = \angle DEB$,$\triangle AEC\cong\triangle DEB$,$AC = BD$,$PQ=\frac {1}{2}AC=\frac {1}{2}BD = PN$,所以平行四边形$PQMN$是菱形.