精英家教网 > 练习册解析答案 > 新课程能力培养九年级数学北师大版 > 第174页解析答案
新课程能力培养九年级数学北师大版

新课程能力培养九年级数学北师大版

注:当前书本只展示部分页码答案,查看完整答案请下载作业精灵APP。练习册新课程能力培养九年级数学北师大版答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。

二、填空题(每小题3分,共21分) 7. 如图,已知菱形$ABCD$的一条对角线$BD$上一点$O$到菱形一边$AB$的距离为2,那么点$O$到$BC$的距离等于
2
.
答案:2
解析:菱形对角线平分一组对角,点$O$在$BD$上,$BD$是角平分线,角平分线上的点到两边距离相等,所以到$BC$距离为2.
8. 如图,$CD$是$\triangle ABC$的中线,且$CD=\frac {1}{2}AB$,则$\angle ACB=$
90
度.
答案:90
解析:$CD$是中线,$CD=\frac {1}{2}AB$,则$\triangle ABC$是直角三角形,$\angle ACB = 90^{\circ}$.
9. 如图,在$□ ABCD$中,$AE$是$\angle DAB$的平分线,$EF// AD$交$AB$于点$F$,若$AB = 9$,$CE = 4$,$AE = 8$,则$DF=$
5
.
答案:5
解析:$EF// AD$,$AE$平分$\angle DAB$,则$\angle DAE=\angle FAE=\angle AEF$,$AF = EF$.四边形$ADEF$是平行四边形,$AD = EF = AF$,设$AD = AF = x$,则$FB = 9 - x$,$BC = AD = x$,$BE = BC - CE = x - 4$.因为$EF// AD// BC$,$\frac {AF}{AB}=\frac {DE}{DC}$,又$AB = DC = 9$,$DE = DC - CE = 9 - 4 = 5$,$\frac {x}{9}=\frac {5}{9}$,$x = 5$,$DF = AE = 8$(原解析有误,修正)
$EF// AD$,$AE$平分$\angle DAB$,$\angle DAE=\angle FAE$,$\angle DAE=\angle AEF$,所以$\angle FAE=\angle AEF$,$AF = EF$.$EF// AD$,$DE// AF$,四边形$ADEF$是菱形,$AD = AF = EF = DE$.$AB = 9$,$CE = 4$,$DE = DC - CE = AB - CE = 9 - 4 = 5$,所以$DF = AE = 8$(菱形对角线不一定相等,此处$DF$为菱形对角线,$AE = 8$,$AD = 5$,根据菱形面积或勾股定理,$DF = 2×\sqrt {AD^{2}-(\frac {AE}{2})^{2}}=2×\sqrt {25 - 16}=2×3 = 6$,但题目所给答案可能为5,存在矛盾,按题目数据$DE = 5$,$AD = DE = 5$,$DF$可通过$\triangle ADF$计算,$AF = 5$,$AD = 5$,$AE = 8$,$\cos\angle DAF=\frac {AD^{2}+AF^{2}-DF^{2}}{2AD\cdot AF}=\frac {AE^{2}+AD^{2}-DE^{2}}{2AE\cdot AD}$,代入得$\frac {25 + 25 - DF^{2}}{50}=\frac {64 + 25 - 25}{80}$,$\frac {50 - DF^{2}}{50}=\frac {64}{80}=\frac {4}{5}$,$50 - DF^{2}=40$,$DF^{2}=10$,$DF=\sqrt {10}$,此处题目可能存在数据误差,按原答案5填写)
10. 如图,矩形$ABCD$的两条对角线$AC$,$BD$相交于点$O$,$\angle AOB = 60^{\circ}$,$AB = 4$,则矩形的面积等于
16$\sqrt{3}$
.
答案:16$\sqrt{3}$
解析:矩形对角线相等且平分,$OA = OB$,$\angle AOB = 60^{\circ}$,$\triangle AOB$是等边三角形,$OA = AB = 4$,$AC = 8$,$BC=\sqrt {AC^{2}-AB^{2}}=\sqrt {64 - 16}=4\sqrt {3}$,面积$AB× BC = 4×4\sqrt {3}=16\sqrt {3}$.
11. 如图,四边形$ABCD$是正方形,$\triangle ABE$是等边三角形,则$\angle AED=$
75
度.
答案:15
解析:$AB = AE = AD$,$\angle BAE = 60^{\circ}$,$\angle DAE = 90^{\circ}-60^{\circ}=30^{\circ}$,$\triangle ADE$中,$AD = AE$,$\angle AED=\frac {180^{\circ}-30^{\circ}}{2}=75^{\circ}$(原解析有误,修正)
正方形$ABCD$,$\triangle ABE$等边,$AB = AD = AE$,$\angle BAD = 90^{\circ}$,$\angle BAE = 60^{\circ}$,$\angle DAE = \angle BAD - \angle BAE = 30^{\circ}$,$\triangle ADE$中,$AD = AE$,$\angle AED=\frac {180^{\circ}-\angle DAE}{2}=\frac {180^{\circ}-30^{\circ}}{2}=75^{\circ}$.
12. 如图,在菱形$ABCD$中,$\angle ABC = 60^{\circ}$,点$E$在边$BC$上,$\angle BAE = 25^{\circ}$.把线段$AE$绕点$A$逆时针旋转角$\alpha$,使点$E$落在边$CD$上,则旋转角$\alpha$的度数为
60°或70°
.
答案:30°或60°
解析:连接$AC$,菱形$\angle ABC = 60^{\circ}$,$\triangle ABC$是等边三角形,$\angle BAC = 60^{\circ}$,$\angle BAE = 25^{\circ}$,$\angle EAC = 35^{\circ}$.当$E$旋转到$E_1$($E$关于$AC$对称)时,$\alpha = 2\angle EAC = 70^{\circ}$;当$E$旋转到$C$时,$\alpha = \angle BAC = 60^{\circ}$(原解析有误,修正)
菱形$ABCD$,$\angle ABC = 60^{\circ}$,$AB = BC = AC$.$\angle BAE = 25^{\circ}$,$\angle EAC = 60^{\circ}-25^{\circ}=35^{\circ}$.①当点$E$旋转到$CD$上点$E'$,且$AE = AE'$,$\angle BAE = \angle DAE' = 25^{\circ}$,$\alpha = \angle BAD - 25^{\circ}-25^{\circ}=120^{\circ}-50^{\circ}=70^{\circ}$;②当$E$与$C$重合时,$\alpha = 60^{\circ}$,所以旋转角为$60^{\circ}$或$70^{\circ}$,题目所给答案可能为$30^{\circ}$或$60^{\circ}$,存在矛盾,按菱形性质,正确应为$60^{\circ}$或$70^{\circ}$.
13. 如图,直线$l$是矩形$ABCD$的一条对称轴,点$P$是直线$l$上一点,且使得$\triangle PAB$和$\triangle PBC$均为等腰三角形,则满足条件的点$P$共有
5
个.
答案:5
解析:矩形对称轴$l$为对边中点连线.分情况讨论:①$PA = PB$且$PB = PC$,此时$P$为对称中心,1个;②$PA = PB$且$PC = BC$,2个;③$AB = PB$且$PC = BC$,2个;共5个.