第44页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
18.[2024四川广安]茶壶几乎是每家必备的常用器具。学习压强知识后,小淇想对家中的茶壶进行相关研究。她测得茶壶的质量为600g,底面积为100cm²,装入适量水后将它放在水平桌面上,测得水的深度如图所示,请你接着她的探究完成如下任务。(ρ水 = 1.0×10³kg/m³,g取10N/kg)
(1)求水对茶壶底的压强。
(2)若水对茶壶底的压力是茶壶对桌面压力的$\frac{3}{5}$,则茶壶内水的质量为多少?(茶壶壁厚度不计)

(1)求水对茶壶底的压强。
(2)若水对茶壶底的压力是茶壶对桌面压力的$\frac{3}{5}$,则茶壶内水的质量为多少?(茶壶壁厚度不计)
答案:
(1)1200 Pa
(2)1.4 kg
解析:
(1)茶壶中水的深度h = 12 cm = 0.12 m,水对茶壶底的压强p = ρ水gh = 1.0×10³ kg/m³×10 N/kg×0.12 m = 1200 Pa;
(2)m壶 = 600 g = 0.6 kg,S壶 = 100 cm² = 10⁻² m²,水对茶壶底的压力是茶壶对桌面压力的$\frac{3}{5}$,pS壶 = $\frac{3}{5}$(m水 + m壶)g,即ρ水ghS壶 = $\frac{3}{5}$(m水 + m壶)g,m水 = $\frac{ρ水hS壶}{0.6}$ - m壶 = $\frac{1.0×10³ kg/m³×0.12 m×10⁻² m²}{0.6}$ - 0.6 kg = 1.4 kg。
(1)1200 Pa
(2)1.4 kg
解析:
(1)茶壶中水的深度h = 12 cm = 0.12 m,水对茶壶底的压强p = ρ水gh = 1.0×10³ kg/m³×10 N/kg×0.12 m = 1200 Pa;
(2)m壶 = 600 g = 0.6 kg,S壶 = 100 cm² = 10⁻² m²,水对茶壶底的压力是茶壶对桌面压力的$\frac{3}{5}$,pS壶 = $\frac{3}{5}$(m水 + m壶)g,即ρ水ghS壶 = $\frac{3}{5}$(m水 + m壶)g,m水 = $\frac{ρ水hS壶}{0.6}$ - m壶 = $\frac{1.0×10³ kg/m³×0.12 m×10⁻² m²}{0.6}$ - 0.6 kg = 1.4 kg。
19.[2024河南]在“探究液体压强与哪些因素有关”时,同学们根据生活经验,提出如下猜想:①可能与深度有关;②可能与方向有关;③可能与液体密度有关。
(1)请写出能支持猜想①的一个生活现象:______________________________。
(2)为了验证猜想,他们利用图所示的装置进行实验。实验前,应观察U形管两侧液面是否________。
(3)比较图中________两次实验可得出液体压强与深度的关系;比较乙、丙两次实验可得出:同种液体内部同一深度,液体向各方向的压强________。
(4)为探究液体压强与液体密度的关系,他们将探头放入另一杯浓盐水中,使探头在盐水中的朝向及________与图乙相同,观察比较U形管两侧液面高度差。
(5)为使U形管两侧液面高度差更明显,可将U形管中的液体换成密度________(选填“更大"或“更小”)的液体。
(1)请写出能支持猜想①的一个生活现象:______________________________。
(2)为了验证猜想,他们利用图所示的装置进行实验。实验前,应观察U形管两侧液面是否________。
(3)比较图中________两次实验可得出液体压强与深度的关系;比较乙、丙两次实验可得出:同种液体内部同一深度,液体向各方向的压强________。
(4)为探究液体压强与液体密度的关系,他们将探头放入另一杯浓盐水中,使探头在盐水中的朝向及________与图乙相同,观察比较U形管两侧液面高度差。
(5)为使U形管两侧液面高度差更明显,可将U形管中的液体换成密度________(选填“更大"或“更小”)的液体。
答案:
(1)游泳时,越往水的深处走,身体感受到的压迫越大(或水从瓶子侧壁的小孔喷出时,水位下降,喷射距离变小;或拦河大坝设计成下宽上窄的形状)
(2)相平(或在同一高度)
(3)甲、乙 相等
(4)深度
(5)更小
(1)游泳时,越往水的深处走,身体感受到的压迫越大(或水从瓶子侧壁的小孔喷出时,水位下降,喷射距离变小;或拦河大坝设计成下宽上窄的形状)
(2)相平(或在同一高度)
(3)甲、乙 相等
(4)深度
(5)更小
20.[2024河北石家庄模拟]如图所示,圆柱形薄壁容器B的质量为0.3kg,底面积为3×10⁻³m²,高0.7m,B中盛有1.5kg的水。均匀圆柱体A 的底面积为6×10⁻³m²,密度为1.5×10³kg/m³。将A、B置于水平地面上。(g取10N/kg)
(1)若A的体积为4×10⁻³m³,求A对水平地面的压力。
(2)求容器B对水平地面的压强。
(3)现将另一物体甲分别放在A的上面和浸没在B容器的水中(水未溢出),A对地面压强的变化量与B中水对容器底压强的变化量相等,求物体甲的密度。

(1)若A的体积为4×10⁻³m³,求A对水平地面的压力。
(2)求容器B对水平地面的压强。
(3)现将另一物体甲分别放在A的上面和浸没在B容器的水中(水未溢出),A对地面压强的变化量与B中水对容器底压强的变化量相等,求物体甲的密度。
答案:
(1)60 N
(2)6×10³ Pa
(3)2×10³ kg/m³
解析:
(1)A的质量mA = ρAVA = 1.5×10³ kg/m³×4×10⁻³ m³ = 6 kg,A对水平地面的压力FA = GA = mAg = 6 kg×10 N/kg = 60 N。
(2)B对水平地面的压力大小等于容器和水的总重力FB = G总 = (m水 + mB)g = (1.5 kg + 0.3 kg)×10 N/kg = 18 N,B对水平地面的压强pB = $\frac{FB}{SB}$ = $\frac{18N}{3×10⁻³m²}$ = 6000 Pa。
(3)甲放在A的上面时,A对地面压强的变化量ΔpA = $\frac{ΔF}{SA}$ = $\frac{G甲}{SA}$ = $\frac{m甲g}{SA}$;甲浸没在B容器的水中时,排开水的体积:V排 = V甲,水上升的高度Δh = $\frac{V排}{SB}$ = $\frac{\frac{m甲}{ρ甲}}{SB}$ = $\frac{m甲}{ρ甲SB}$,B中水对容器底压强的变化量ΔpB = ρ水gΔh = ρ水g$\frac{m甲}{ρ甲SB}$,由ΔpA = ΔpB,得$\frac{m甲g}{SA}$ = ρ水g$\frac{m甲}{ρ甲SB}$,则ρ甲 = $\frac{SA}{SB}$ρ水 = $\frac{6×10⁻³m²}{3×10⁻³m²}$×1.0×10³ kg/m³ = 2×10³ kg/m³。
(1)60 N
(2)6×10³ Pa
(3)2×10³ kg/m³
解析:
(1)A的质量mA = ρAVA = 1.5×10³ kg/m³×4×10⁻³ m³ = 6 kg,A对水平地面的压力FA = GA = mAg = 6 kg×10 N/kg = 60 N。
(2)B对水平地面的压力大小等于容器和水的总重力FB = G总 = (m水 + mB)g = (1.5 kg + 0.3 kg)×10 N/kg = 18 N,B对水平地面的压强pB = $\frac{FB}{SB}$ = $\frac{18N}{3×10⁻³m²}$ = 6000 Pa。
(3)甲放在A的上面时,A对地面压强的变化量ΔpA = $\frac{ΔF}{SA}$ = $\frac{G甲}{SA}$ = $\frac{m甲g}{SA}$;甲浸没在B容器的水中时,排开水的体积:V排 = V甲,水上升的高度Δh = $\frac{V排}{SB}$ = $\frac{\frac{m甲}{ρ甲}}{SB}$ = $\frac{m甲}{ρ甲SB}$,B中水对容器底压强的变化量ΔpB = ρ水gΔh = ρ水g$\frac{m甲}{ρ甲SB}$,由ΔpA = ΔpB,得$\frac{m甲g}{SA}$ = ρ水g$\frac{m甲}{ρ甲SB}$,则ρ甲 = $\frac{SA}{SB}$ρ水 = $\frac{6×10⁻³m²}{3×10⁻³m²}$×1.0×10³ kg/m³ = 2×10³ kg/m³。
查看更多完整答案,请扫码查看