15. 计算:
(1)$\sqrt{\frac{1}{3}} \times \sqrt{12} + \sqrt{6} \div \sqrt{2} - \sqrt{27}$;(4分)
(2)$(\sqrt{3} - 2)^2(\sqrt{3} + 2)^2 - \sqrt{8} + 6\sqrt{\frac{1}{2}}$.(4分)
(1)$\sqrt{\frac{1}{3}} \times \sqrt{12} + \sqrt{6} \div \sqrt{2} - \sqrt{27}$;(4分)
(2)$(\sqrt{3} - 2)^2(\sqrt{3} + 2)^2 - \sqrt{8} + 6\sqrt{\frac{1}{2}}$.(4分)
答案:
(1) 解:原式$=2+\sqrt{3}-3\sqrt{3}=2 - 2\sqrt{3}$.
(2) 解:原式$=[(\sqrt{3}-2)(\sqrt{3}+2)]^{2}-2\sqrt{2}+3\sqrt{2}=(3 - 4)^{2}-2\sqrt{2}+3\sqrt{2}=1 - 2\sqrt{2}+3\sqrt{2}=1+\sqrt{2}$.
(1) 解:原式$=2+\sqrt{3}-3\sqrt{3}=2 - 2\sqrt{3}$.
(2) 解:原式$=[(\sqrt{3}-2)(\sqrt{3}+2)]^{2}-2\sqrt{2}+3\sqrt{2}=(3 - 4)^{2}-2\sqrt{2}+3\sqrt{2}=1 - 2\sqrt{2}+3\sqrt{2}=1+\sqrt{2}$.
16. 已知:如图,在△ABC中,AB = AC,AD是∠BAC的平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E. 求证:四边形ADCE为矩形.

答案:
证明:$\because AB = AC$,$AD$是$\angle BAC$的平分线,$\therefore AD\perp BC$,$\angle BAD=\angle CAD$.$\therefore \angle ADC = 90^{\circ}$,$\because AN$为$\triangle ABC$的外角$\angle CAM$的平分线,$\therefore \angle MAN=\angle CAN$.$\therefore \angle DAE = 90^{\circ}$,$\because CE\perp AN$,$\therefore \angle AEC = 90^{\circ}$.$\therefore$四边形$ADCE$为矩形.
17. 如图,直线$y = kx + b$经过点A(-5,0),B(-1,4).
(1)求直线AB的解析式;(4分)
(2)求直线CE:$y = - 2x - 4$与直线AB及y轴围成图形的面积.(4分)

(1)求直线AB的解析式;(4分)
(2)求直线CE:$y = - 2x - 4$与直线AB及y轴围成图形的面积.(4分)
答案:
(1) 解:因为直线$y = kx + b$经过点$A(-5,0)$,$B(-1,4)$,所以$\begin{cases}-5k + b = 0\\-k + b = 4\end{cases}$,解得$\begin{cases}k = 1\\b = 5\end{cases}$,所以直线$AB$的解析式为$y = x + 5$.
(2) 因为直线$y = -2x - 4$与直线$AB$相交于点$C$,所以联立$\begin{cases}y = -2x - 4\\y = x + 5\end{cases}$,解得$\begin{cases}x = -3\\y = 2\end{cases}$,故$C(-3,2)$. 因为直线$y = -2x - 4$与$y = x + 5$分别交$y$轴于点$E$和点$D$,所以易得$E(0,-4)$,$D(0,5)$,所以围成图形的面积为$S_{\triangle CDE}=\frac{1}{2}DE\cdot|x_{C}|=\frac{1}{2}\times[5 - (-4)]\times3=\frac{27}{2}$.
(1) 解:因为直线$y = kx + b$经过点$A(-5,0)$,$B(-1,4)$,所以$\begin{cases}-5k + b = 0\\-k + b = 4\end{cases}$,解得$\begin{cases}k = 1\\b = 5\end{cases}$,所以直线$AB$的解析式为$y = x + 5$.
(2) 因为直线$y = -2x - 4$与直线$AB$相交于点$C$,所以联立$\begin{cases}y = -2x - 4\\y = x + 5\end{cases}$,解得$\begin{cases}x = -3\\y = 2\end{cases}$,故$C(-3,2)$. 因为直线$y = -2x - 4$与$y = x + 5$分别交$y$轴于点$E$和点$D$,所以易得$E(0,-4)$,$D(0,5)$,所以围成图形的面积为$S_{\triangle CDE}=\frac{1}{2}DE\cdot|x_{C}|=\frac{1}{2}\times[5 - (-4)]\times3=\frac{27}{2}$.
查看更多完整答案,请扫码查看