八(本题满分14分)
23. 如图1,在矩形$OACB$中,点$A$在$x$轴正半轴上,点$B$在$y$轴正半轴上,点$C$在第一象限,$OA = 8$,$OB = 6$.
(1)直接写出点$C$的坐标:__________;(3分)
(2)如图2,点$G$在$BC$边上,连接$AG$,将$\triangle ACG$沿$AG$折叠,点$C$恰好与线段$AB$上的点$C'$重合,求线段$CG$的长度;(6分)
(3)如图3,$P$是直线$y = 2x - 6$上一点且在$BC$下方,$PD\perp PB$交线段$AC$于点$D$. 若$P$在第一象限,且$PB = PD$,求点$P$的坐标. (5分)

23. 如图1,在矩形$OACB$中,点$A$在$x$轴正半轴上,点$B$在$y$轴正半轴上,点$C$在第一象限,$OA = 8$,$OB = 6$.
(1)直接写出点$C$的坐标:__________;(3分)
(2)如图2,点$G$在$BC$边上,连接$AG$,将$\triangle ACG$沿$AG$折叠,点$C$恰好与线段$AB$上的点$C'$重合,求线段$CG$的长度;(6分)
(3)如图3,$P$是直线$y = 2x - 6$上一点且在$BC$下方,$PD\perp PB$交线段$AC$于点$D$. 若$P$在第一象限,且$PB = PD$,求点$P$的坐标. (5分)
答案:
(1)(8,6)
(2)解:$\because BC = 8$,$AC = 6$,$\therefore AB=\sqrt{BC^{2}+AC^{2}}=\sqrt{64 + 36}=10$,$\because$将$\triangle ACG$沿$AG$折叠,点$C$恰好与线段$AB$上的点$C'$重合,$\therefore AC = AC' = 6$,$CG = C'G$,$\angle C=\angle AC'G = 90^{\circ}$,$\therefore BC' = AB - AC' = 10 - 6 = 4$,在$\triangle BC'G$中,$BG^{2}=C'G^{2}+BC'^{2}$,$\therefore(8 - CG)^{2}=CG^{2}+16$,解得$CG = 3$,$\therefore$线段$CG$的长度为3;
(3)设点$P(a,2a - 6)$,如图3
,过点$P$作$EF// BC$,交$y$轴于点$E$,交$AC$于点$F$,$\because PD\perp PB$,$\therefore\angle BPD = 90^{\circ}$,$\therefore\angle BPE = 90^{\circ}-\angle DPF$. $\because EF// BC$,$\therefore\angle PFD=\angle ACB = 90^{\circ}$,$\therefore\angle PDF = 90^{\circ}-\angle DPF$,$\therefore\angle BPE=\angle PDF$,$\because\angle BEP=\angle PFD = 90^{\circ}$,$BP = PD$,$\therefore\triangle BPE\cong\triangle PDF(AAS)$. $\therefore PF = BE = OB - OE = 6-(2a - 6)=12 - 2a$,$\because EF = PE + PF = OA = 8$,$\therefore a+(12 - 2a)=8$,解得$a = 4$,$\therefore$点$P$的坐标为$(4,2)$.
(1)(8,6)
(2)解:$\because BC = 8$,$AC = 6$,$\therefore AB=\sqrt{BC^{2}+AC^{2}}=\sqrt{64 + 36}=10$,$\because$将$\triangle ACG$沿$AG$折叠,点$C$恰好与线段$AB$上的点$C'$重合,$\therefore AC = AC' = 6$,$CG = C'G$,$\angle C=\angle AC'G = 90^{\circ}$,$\therefore BC' = AB - AC' = 10 - 6 = 4$,在$\triangle BC'G$中,$BG^{2}=C'G^{2}+BC'^{2}$,$\therefore(8 - CG)^{2}=CG^{2}+16$,解得$CG = 3$,$\therefore$线段$CG$的长度为3;
(3)设点$P(a,2a - 6)$,如图3
查看更多完整答案,请扫码查看